John D. Hedley
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John D. Hedley.
Remote Sensing | 2009
Susan Kay; John D. Hedley; Samantha Lavender
Sun glint, the specular reflection of light from water surfaces, is a serious confounding factor for remote sensing of water column properties and benthos. This paper reviews current techniques to estimate and remove the glint radiance component from imagery. Methods for processing of ocean color images use statistical sea surface models to predict the glint from the sun and sensor positions and wind data. Methods for higher resolution imaging, used in coastal and shallow water mapping, estimate the glint radiance from the near-infrared signal. The effects of some current methods are demonstrated and possibilities for future techniques are briefly addressed.
Nature | 2001
Peter J. Mumby; John R. M. Chisholm; Chris D. Clark; John D. Hedley; J. Jaubert
Almost three-quarters of the worlds coral reefs are thought to be deteriorating as a consequence of environmental stress. Until now, it has been possible to evaluate reef health only by field survey, which is labour-intensive and time-consuming. Here we map live coral cover from the air by remote imaging, a technique that will enable the state of shallow reefs to be monitored swiftly and over large areas.
Optics Express | 2008
John D. Hedley
A geometric optical model for three-dimensional radiative transfer capable of handling arbitrary arrangements of surfaces within anisotropic scattering media is described. The model operates by discretizing surfaces and volumes into patches and voxels and establishing the radiative transfer relationship between every pair of elements. In a plane-parallel configuration results for directional radiance agree closely with the numerical integration invariant imbedded method. Model accuracy for two examples incorporating surface water waves and complex benthic structures were assessed by conservation of energy, errors were less than 1%. Potential applications in remote sensing or photobiological studies of structurally complex benthos in shallow water environments are illustrated.
Remote Sensing | 2015
Sarah Hamylton; John D. Hedley; Robin J. Beaman
The high importance of bathymetric character for many processes on reefs means that high-resolution bathymetric models are commonly needed by marine scientists and coastal managers. Empirical and optimisation methods provide two approaches for deriving bathymetry from multispectral satellite imagery, which have been refined and widely applied to coral reefs over the last decade. This paper compares these two approaches by means of a geographical error analysis for two sites on the Great Barrier Reef: Lizard Island (a continental island fringing reef) and Sykes Reef (a planar platform reef). The geographical distributions of model residuals (i.e., the difference between modelled and measured water depths) are mapped, and their spatial autocorrelation is calculated as a basis for comparing the performance of the bathymetric models. Comparisons reveal consistent geographical properties of errors arising from both models, including the tendency for positive residuals (i.e., an under-prediction of depth) in shallower areas and negative residuals in deeper areas (i.e., an over-prediction of depth) and the presence of spatial autocorrelation in model errors. A spatial error model is used to generate more reliable estimates of bathymetry by quantifying the spatial structure (autocorrelation) of model error and incorporating this into an improved regression model. Spatial error models improve bathymetric estimates derived from both methods.
Optics Express | 2011
Susan Kay; John D. Hedley; Samantha Lavender; Alex Nimmo-Smith
The behavior of light at the air-sea interface has been investigated using ray tracing methods with numerically realized surfaces that incorporate features on scales from 3 millimeters to 200 meters. The directional reflection of light at the surface realizations was tested using Monte Carlo code. Estimated directionally reflected radiances were generally in good agreement with those from existing methods that model the slope statistics but not the shape of the sea surface. However, significant differences were found for some incident and exitant directions. The model was used to quantitatively estimate the pixel-to-pixel variation in ocean color images caused by spatial variation in the sea surface shape.
Remote Sensing | 2015
Rodrigo A. Garcia; John D. Hedley; Hoang C. Tin; Peter Fearns
Quantifying the number and type of benthic classes that are able to be spectrally identified in shallow water remote sensing is important in understanding its potential for habitat mapping. Factors that impact the effectiveness of shallow water habitat mapping include water column turbidity, depth, sensor and environmental noise, spectral resolution of the sensor and spectral variability of the benthic classes. In this paper, we present a simple hierarchical clustering method coupled with a shallow water forward model to generate water-column specific spectral libraries. This technique requires no prior decision on the number of classes to output: the resultant classes are optically separable above the spectral noise introduced by the sensor, image based radiometric corrections, the benthos’ natural spectral variability and the attenuating properties of a variable water column at depth. The modeling reveals the effect reducing the spectral resolution has on the number and type of classes that are optically distinct. We illustrate the potential of this clustering algorithm in an analysis of the conditions, including clustering accuracy, sensor spectral resolution and water column optical properties and depth that enabled the spectral distinction of the seagrass Amphibolis antartica from benthic algae.
Applied Optics | 2013
Susan Kay; John D. Hedley; Samantha Lavender
The intensity and location of Sun glint in two Medium Resolution Imaging Spectrometer (MERIS) images was modeled using a radiative transfer model that includes elevation features as well as the slope of the sea surface. The results are compared to estimates made using glint flagging and correction approaches used within standard atmospheric correction processing code. The model estimate gives a glint pattern with a similar width but lower peak level than any current method, or than that estimated by a radiative transfer model with surfaces that include slope but not height. The MERIS third reprocessing recently adopted a new slope statistics model for Sun glint correction; the results show that this model is an outlier with respect to both the elevation model and other slope statistics models and we recommend that its adoption should be reviewed.
Remote Sensing | 2017
William J. Skirving; Susana Enríquez; John D. Hedley; Sophie Dove; C. Mark Eakin; Robert A. B. Mason; Jacqueline L. De La Cour; Gang Liu; Ove Hoegh-Guldberg; Alan E. Strong; Peter J. Mumby; Roberto Iglesias-Prieto
The National Oceanic and Atmospheric Administration’s Coral Reef Watch program developed and operates several global satellite products to monitor bleaching-level heat stress. While these products have a proven ability to predict the onset of most mass coral bleaching events, they occasionally miss events; inaccurately predict the severity of some mass coral bleaching events; or report false alarms. These products are based solely on temperature and yet coral bleaching is known to result from both temperature and light stress. This study presents a novel methodology (still under development), which combines temperature and light into a single measure of stress to predict the onset and severity of mass coral bleaching. We describe here the biological basis of the Light Stress Damage (LSD) algorithm under development. Then by using empirical relationships derived in separate experiments conducted in mesocosm facilities in the Mexican Caribbean we parameterize the LSD algorithm and demonstrate that it is able to describe three past bleaching events from the Great Barrier Reef (GBR). For this limited example, the LSD algorithm was able to better predict differences in the severity of the three past GBR bleaching events, quantifying the contribution of light to reduce or exacerbate the impact of heat stress. The new Light Stress Damage algorithm we present here is potentially a significant step forward in the evolution of satellite-based bleaching products.
Metrologia | 2012
Samantha Lavender; O Fanton d'Andon; Susan Kay; Ludovic Bourg; S Emsley; Nicolas Gilles; T Nightingale; Ralf Quast; Martin Bates; Thomas Storm; John D. Hedley; M Knul; G Sotis; R Nasir-Habeeb; P Goryl; Sentinel L Products; Algorithm Team
Retrieval of operational optical products from the future Global Monitoring for Environment and Security (GMES) Sentinel-3 mission aims to provide continuity of existing missions delivering ocean/land colour, surface temperature and sea surface topography data. This paper describes the current status of the Sentinel-3 Level 2 Optical Prototype Processor (O-L2PP) whose development includes not only a list of products, but also associated uncertainty estimates—a key requirement for the processor. Examples of the approaches adopted within the Ocean and Land Colour Instrument (OLCI) processing module demonstrate how uncertainties can be estimated.
Frontiers in Marine Science | 2017
John D. Hedley; Brandon J. Russell; Kaylan Randolph; Miguel Ángel Pérez-Castro; Román Manuel Vásquez-Elizondo; Susana Enríquez; Heidi M. Dierssen
The capability for mapping two species of seagrass, Thalassia testudinium and Syringodium filiforme, by remote sensing using a physics based model inversion method was investigated. The model was based on a three-dimensional canopy model combined with a model for the overlying water column. The model included uncertainty propagation based on variation in leaf reflectances, canopy structure, water column properties and the air-water interface. The uncertainty propagation enabled both a-priori predictive sensitivity analysis of potential capability and the generation of per-pixel error bars when applied to imagery. A primary aim of the work was to compare the sensitivity analysis to results achieved in a practical application using airborne hyperspectral data, to gain insight on the validity of sensitivity analyses in general. Results showed that while the sensitivity analysis predicted a weak but positive discrimination capability for species, in a practical application the relevant spectral differences were extremely small compared to discrepancies in the radiometric alignment of the model with the imagery – even though this alignment was very good. Complex interactions between spectral matching and uncertainty propagation also introduced biases. Ability to discriminate LAI was good, and comparable to previously published methods using different approaches. The main limitation in this respect was spatial alignment with the imagery with in situ data, which was heterogeneous on scales of a few meters. The results provide insight on the limitations of physics based inversion methods and seagrass mapping in general. Complex models can degrade unpredictably when radiometric alignment of the model and imagery is not perfect and incorporating uncertainties can have non-intuitive impacts on method performance. Sensitivity analyses are upper bounds to practical capability, incorporating a term for potential systematic errors in radiometric alignment may be advisable. While Thalassia testudinium and Syringodium filiforme were too spectrally similar to be discriminated purely on spectral grounds, mapping of these and other species may be achievable by exploiting co-incident factors based on ecological zonation.