Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John D. Houlé is active.

Publication


Featured researches published by John D. Houlé.


The Journal of Neuroscience | 2009

Combining Peripheral Nerve Grafts and Chondroitinase Promotes Functional Axonal Regeneration in the Chronically Injured Spinal Cord

Veronica J. Tom; Harra R. Sandrow-Feinberg; Kassi Miller; Lauren Santi; Theresa Connors; Michel A. Lemay; John D. Houlé

Because there currently is no treatment for spinal cord injury, most patients are living with long-standing injuries. Therefore, strategies aimed at promoting restoration of function to the chronically injured spinal cord have high therapeutic value. For successful regeneration, long-injured axons must overcome their poor intrinsic growth potential as well as the inhibitory environment of the glial scar established around the lesion site. Acutely injured axons that regenerate into growth-permissive peripheral nerve grafts (PNGs) reenter host tissue to mediate functional recovery if the distal graft–host interface is treated with chondroitinase ABC (ChABC) to cleave inhibitory chondroitin sulfate proteoglycans in the scar matrix. To determine whether a similar strategy is effective for a chronic injury, we combined grafting of a peripheral nerve into a highly relevant, chronic, cervical contusion site with ChABC treatment of the glial scar and glial cell line-derived neurotrophic factor (GDNF) stimulation of long-injured axons. We tested this combination in two grafting paradigms: (1) a peripheral nerve that was grafted to span a chronic injury site or (2) a PNG that bridged a chronic contusion site with a second, more distal injury site. Unlike GDNF–PBS treatment, GDNF–ChABC treatment facilitated axons to exit the PNG into host tissue and promoted some functional recovery. Electrical stimulation of axons in the peripheral nerve bridge induced c-Fos expression in host neurons, indicative of synaptic contact by regenerating fibers. Thus, our data demonstrate, for the first time, that administering ChABC to a distal graft interface allows for functional axonal regeneration by chronically injured neurons.


Journal of Neurotrauma | 2011

Activity-dependent increase in neurotrophic factors is associated with an enhanced modulation of spinal reflexes after spinal cord injury.

Marie-Pascale Côté; Gregory A. Azzam; Michel A. Lemay; Victoria Zhukareva; John D. Houlé

Activity-based therapies such as passive bicycling and step-training on a treadmill contribute to motor recovery after spinal cord injury (SCI), leading to a greater number of steps performed, improved gait kinematics, recovery of phase-dependent modulation of spinal reflexes, and prevention of decrease in muscle mass. Both tasks consist of alternating movements that rhythmically stretch and shorten hindlimb muscles. However, the paralyzed hindlimbs are passively moved by a motorized apparatus during bike-training, whereas locomotor movements during step-training are generated by spinal networks triggered by afferent feedback. Our objective was to compare the task-dependent effect of bike- and step-training after SCI on physiological measures of spinal cord plasticity in relation to changes in levels of neurotrophic factors. Thirty adult female Sprague-Dawley rats underwent complete spinal transection at a low thoracic level (T12). The rats were assigned to one of three groups: bike-training, step-training, or no training. The exercise regimen consisted of 15 min/d, 5 days/week, for 4 weeks, beginning 5 days after SCI. During a terminal experiment, H-reflexes were recorded from interosseus foot muscles following stimulation of the tibial nerve at 0.3, 5, or 10 Hz. The animals were sacrificed and the spinal cords were harvested for Western blot analysis of the expression of neurotrophic factors in the lumbar spinal cord. We provide evidence that bike- and step-training significantly increase the levels of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and NT-4 in the lumbar enlargement of SCI rats, whereas only step-training increased glial cell-derived neurotrophic factor (GDNF) levels. An increase in neurotrophic factor protein levels that positively correlated with the recovery of H-reflex frequency-dependent depression suggests a role for neurotrophic factors in reflex normalization.


Cytokine | 2010

Secretion profile of human bone marrow stromal cells: Donor variability and response to inflammatory stimuli

Victoria Zhukareva; Maria Obrocka; John D. Houlé; Itzhak Fischer; Birgit Neuhuber

Mesenchymal stem cells (MSC) derived from bone marrow are ideal transplants for a variety of CNS disorders and appear to support recovery after injury by secreting therapeutic factors. There is considerable variability in the secretion profile of MSC derived from different donors and it is known that MSC secretion changes in response to inflammatory stimuli, but no comprehensive analysis has been performed to address these issues. Here we show that MSC from seven donors secrete chemokines and cytokines in variable ranges, with some factors showing high variability. Treatment of cultured MSC with pro-inflammatory cytokines or tissue extracts from injured spinal cord resulted in up-regulation of selected cytokines, whereas treatment with an anti-inflammatory cytokine had little effect, indicating that the secretion profile is tightly regulated by environmental challenges. Patterns of up-regulated cytokines were similar in MSC from different donors suggesting a comparable response to inflammatory stimuli.


Experimental Neurology | 2012

Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury

Gang Liu; Megan Ryan Detloff; Kassi Miller; Lauren Santi; John D. Houlé

We investigated microRNAs (miRs) associated with PTEN/mTOR signaling after spinal cord injury (SCI) and after hind limb exercise (Ex), a therapy implicated in promoting spinal cord plasticity. After spinalization, rats received cycling Ex 5 days/week. The expression of miRs, their target genes and downstream effectors were probed in spinal cord tissue at 10 and 31 days post injury. Ex elevated expression of miR21 and decreased expression of miR 199a-3p correlating with significant change in the expression of their respective target genes: PTEN mRNA decreased and mTOR mRNA increased. Western blotting confirmed comparable changes in protein levels. An increase in phosphorylated-S6 (a downstream effector of mTOR) within intermediate grey neurons in Ex rats was blocked by Rapamycin treatment. It thus appears possible that activity-dependent plasticity in the injured spinal cord is modulated in part through miRs that regulate PTEN and mTOR signaling and may indicate an increase in the regenerative potential of neurons affected by a SCI.


Journal of Neurotrauma | 2009

Administration of Chondroitinase ABC Rostral or Caudal to a Spinal Cord Injury Site Promotes Anatomical but Not Functional Plasticity

Veronica J. Tom; Rachel Kadakia; Lauren Santi; John D. Houlé

Growth-inhibitory chondroitin sulfate proteoglycans (CSPG) are a primary target for therapeutic strategies after spinal cord injury because of their contribution to the inhibitory nature of glial scar tissue, a major barrier to successful axonal regeneration. Chondroitinase ABC (ChABC) digestion of CSPGs promotes axonal regeneration beyond a lesion site with subsequent functional improvement. ChABC also has been shown to promote sprouting of spared fibers but it is not clear if functional recovery results from such plasticity. Here we sought to better understand the roles rostral or caudal sprouting may play in ChABC-mediated functional improvement. To achieve this, ChABC or vehicle was injected rostral or caudal to a unilateral C5 injury. When injected rostral to a hemisection, ChABC promoted significant sprouting of 5HT+ fibers into dorsal and ventral horns. When ChABC was injected into tissue caudal to a hemisection, no additional sprouting was observed. When injected caudal to a hemicontusion injury, ChABC promoted sprouting of 5HT+ fibers into the ventral horn but not the dorsal horn. None of this sprouting resulted in a change in the synaptic component synapsin, nor did it impact performance in behavioral tests assessing motor function. These data suggest that ChABC-mediated sprouting of spared fibers does not necessarily translate into functional recovery.


Experimental Neurology | 2010

Cycling exercise affects the expression of apoptosis-associated microRNAs after spinal cord injury in rats

Gang Liu; Benjamin E. Keeler; Victoria Zhukareva; John D. Houlé

There are two major aspects to a spinal cord injury (SCI): an acute, primary mechanical trauma and a progressive phase of secondary tissue damage provoked by inflammation, excitotoxicity, apoptosis, and demyelination. MicroRNAs (miRs) are small, ~22 nucleotide, non-protein-coding RNAs that function at the post-transcriptional level to regulate gene expression. They have important roles in homeostatic processes such as cell proliferation and programmed cell death. In the injured rat spinal cord we performed an expression analysis of miRs and their downstream targets involved in apoptotic pathways and used post-injury cycling exercise to test for activity-dependent plasticity of miR expression. We show that SCI results in increased expression of miR Let-7a and miR16 while exercise leads to elevated levels of miR21 and decreased levels of miR15b. These changes in miR expression are correlated with changes in expression of their target genes: pro-apoptotic (decreased PTEN, PDCD4, and RAS mRNA) and anti-apoptotic (increased Bcl-2 mRNA) target genes. This is accompanied by a down-regulation of mRNA for caspase-7 and caspase-9 and reduced levels of caspase-7 protein. These results indicate possible beneficial effects of exercise through action on multiple miRs and their targets that contribute to the functional regulation of apoptosis after SCI.


Experimental Neurology | 2008

Intraspinal microinjection of chondroitinase ABC following injury promotes axonal regeneration out of a peripheral nerve graft bridge

Veronica J. Tom; John D. Houlé

Chondroitin sulfate proteoglycans (CSPG) within the glial scar formed after central nervous system (CNS) injury are thought to play a crucial role in regenerative failure. We previously showed that delivery of the CSPG-digesting enzyme chondroitinase ABC (ChABC) via an osmotic minipump allowed axonal regeneration and functional recovery in a peripheral nerve graft (PNG)-bridging model. In this study, we sought to overcome the technical limitations associated with minipumps by microinjecting ChABC directly into the distal lesion site in the PN bridging model. Microinjection of ChABC immediately rostral and caudal to an injury site resulted in extensive CSPG digestion. We also demonstrate that this delivery technique is relatively atraumatic and does not result in a noticeable inflammatory response. Importantly, microinjections of ChABC into the lesion site permitted more regenerating axons to exit a PNG and reenter spinal cord tissue than saline injections. These results are similar to our previous findings when ChABC was delivered via a minipump and suggest that microinjecting ChABC is an effective method of delivering the potentially therapeutic enzyme directly to an injury site.


Annals of the New York Academy of Sciences | 2013

Axon regeneration and exercise-dependent plasticity after spinal cord injury

John D. Houlé; Marie-Pascale Côté

Current dogma states that meaningful recovery of function after spinal cord injury (SCI) will likely require a combination of therapeutic interventions comprised of regenerative/neuroprotective transplants, addition of neurotrophic factors, elimination of inhibitory molecules, functional sensorimotor training, and/or stimulation of paralyzed muscles or spinal circuits. We routinely use (1) peripheral nerve grafts to support and direct axonal regeneration across an incomplete cervical or complete thoracic transection injury, (2) matrix modulation with chondroitinase (ChABC) to facilitate axonal extension beyond the distal graft–spinal cord interface, and (3) exercise, such as forced wheel walking, bicycling, or step training on a treadmill. We and others have demonstrated an increase in spinal cord levels of endogenous neurotrophic factors with exercise, which may be useful in facilitating elongation and/or synaptic activity of regenerating axons and plasticity of spinal neurons below the level of injury.


Brain Research | 2012

Acute and prolonged hindlimb exercise elicits different gene expression in motoneurons than sensory neurons after spinal cord injury

Benjamin E. Keeler; Gang Liu; Rachel Siegfried; Victoria Zhukareva; Marion Murray; John D. Houlé

We examined gene expression in the lumbar spinal cord and the specific response of motoneurons, intermediate gray and proprioceptive sensory neurons after spinal cord injury and exercise of hindlimbs to identify potential molecular processes involved in activity dependent plasticity. Adult female rats received a low thoracic transection and passive cycling exercise for 1 or 4weeks. Gene expression analysis focused on the neurotrophic factors: brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), and their receptors because of their potential roles in neural plasticity. We also examined expression of genes involved in the cellular response to injury: heat shock proteins (HSP) -27 and -70, glial fibrillary acidic protein (GFAP) and caspases -3, -7, and -9. In lumbar cord samples, injury increased the expression of mRNA for TrkB, all three caspases and the HSPs. Acute and prolonged exercise increased expression of mRNA for the neurotrophic factors BDNF and GDNF, but not their receptors. It also increased HSP expression and decreased caspase-7 expression, with changes in protein levels complimentary to these changes in mRNA expression. Motoneurons and intermediate gray displayed little change in mRNA expression following injury, but acute and prolonged exercise increased levels of mRNA for BDNF, GDNF and NT-4. In large DRG neurons, mRNA for neurotrophic factors and their receptors were largely unaffected by either injury or exercise. However, caspase mRNA expression was increased by injury and decreased by exercise. Our results demonstrate that exercise affects expression of genes involved in plasticity and apoptosis in a cell specific manner and that these change with increased post-injury intervals and/or prolonged periods of exercise.


Journal of Neurotrauma | 2003

Restriction of axonal retraction and promotion of axonal regeneration by chronically injured neurons after intraspinal treatment with glial cell line-derived neurotrophic factor (GDNF).

Dirk Dolbeare; John D. Houlé

The response of supraspinal neurons to acute or delayed treatment with GDNF following a spinal cord injury was examined. A cervical level 3 hemisection lesion cavity was created by tissue aspiration in adult, female rats. In one experiment gel foam saturated with GDNF was placed into the lesion cavity immediately after injury to determine if the extent of axonal retraction was affected by neurotrophic factor treatment. One week prior to sacrifice animals received a microinjection of biotinylated dextran amine (BDA) into the red nucleus and reticular formation to label descending spinal pathways by anterograde transport mechanisms. Animals were sacrificed 1 or 4 weeks after injury and treatment with GDNF. The terminal end of injured BDA-labeled rubrospinal and reticulospinal tract axons was identified and the distance from the lesion was measured. In comparison to PBS-treated animals, GDNF-treatment resulted in a significant decrease in the extent of axonal retraction of both rubrospinal and reticulospinal tract axons at 1 week after spinal cord injury for both tracts. At 4 weeks after injury the mean distance from the lesion was less than 240 microm following GDNF-treatment for both tracts, compared to over 480 microm following PBS-treatment. In the second experiment injured supraspinal neurons were labeled by retrograde transport of True Blue that had been placed into the lesion cavity. One month later scar tissue was removed from the cavity by aspiration to enlarge the cavity by approximately 500 microm in a rostral direction. GDNF-saturated gel foam was placed into the cavity for 60 min prior to apposition of an autologous peripheral nerve (PN) graft to the rostral cavity wall. One month later Nuclear Yellow was applied to the distal end of the PN graft and animals were sacrificed after 2 days. The number of supraspinal neurons containing both True Blue and Nuclear Yellow was counted as a measure of axonal regeneration by chronically injured neurons. There was a seven-fold increase in the number of regenerating neurons after GDNF-treatment, with the majority (65%) of dual-labeled neurons located within the reticular formation. These results indicate that GDNF has neuroprotective effects when provided acutely after injury and promotes axonal regeneration when provided in a chronic injury situation.

Collaboration


Dive into the John D. Houlé's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge