Veronica J. Tom
Drexel University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Veronica J. Tom.
The Journal of Neuroscience | 2006
John D. Houle; Veronica J. Tom; Debra A. Mayes; Gail Wagoner; Napoleon Phillips; Jerry Silver
Chondroitinase-ABC (ChABC) was applied to a cervical level 5 (C5) dorsal quadrant aspiration cavity of the adult rat spinal cord to degrade the local accumulation of inhibitory chondroitin sulfate proteoglycans. The intent was to enhance the extension of regenerated axons from the distal end of a peripheral nerve (PN) graft back into the C5 spinal cord, having bypassed a hemisection lesion at C3. ChABC-treated rats showed (1) gradual improvement in the range of forelimb swing during locomotion, with some animals progressing to the point of raising their forelimb above the nose, (2) an enhanced ability to use the forelimb in a cylinder test, and (3) improvements in balance and weight bearing on a horizontal rope. Transection of the PN graft, which cuts through regenerated axons, greatly diminished these functional improvements. Axonal regrowth from the PN graft correlated well with the behavioral assessments. Thus, many more axons extended for much longer distances into the cord after ChABC treatment and bridge insertion compared with the control groups, in which axons regenerated into the PN graft but growth back into the spinal cord was extremely limited. These results demonstrate, for the first time, that modulation of extracellular matrix components after spinal cord injury promotes significant axonal regeneration beyond the distal end of a PN bridge back into the spinal cord and that regenerating axons can mediate the return of useful function of the affected limb.
The Journal of Neuroscience | 2004
Veronica J. Tom; Michael P. Steinmetz; Jared H. Miller; Catherine Doller; Jerry Silver
We have developed a novel in vitro model of the glial scar that mimics the gradient of proteoglycan found in vivo after spinal cord injury. In this model, regenerated axons from adult sensory neurons that extended deeply into the gradient developed bulbous, vacuolated endings that looked remarkably similar to dystrophic endings formed in vivo. We demonstrate that despite their highly abnormal appearance and stalled forward progress, dystrophic endings are extremely dynamic both in vitro and in vivo after spinal cord injury. Time-lapse movies demonstrated that dystrophic endings continually send out membrane veils and endocytose large membrane vesicles at the leading edge, which were then retrogradely transported to the rear of the “growth cone.” This direction of movement is contrary to membrane dynamics that occur during normal neurite outgrowth. As further evidence of this motility, dystrophic endings endocytosed large amounts of dextran both in vitro and in vivo. We now have an in vitro model of the glial scar that may serve as a potent tool for developing and screening potential treatments to help promote regeneration past the lesion in vivo.
The Journal of Neuroscience | 2005
Michael P. Steinmetz; Kevin P. Horn; Veronica J. Tom; Jared H. Miller; Sarah A. Busch; Dileep Nair; Daniel J. Silver; Jerry Silver
Peripherally conditioned sensory neurons have an increased capacity to regenerate their central processes. However, even conditioned axons struggle in the presence of a hostile CNS environment. We hypothesized that combining an aggressive conditioning strategy with modification of inhibitory reactive astroglial-associated extracellular matrix could enhance regeneration. We screened potential treatments using a model of the dorsal root entry zone (DREZ). In this assay, a gradient of inhibitory chondroitin sulfate proteoglycans (CSPGs) stimulates formation of dystrophic end bulbs on adult sensory axons, which mimics regeneration failure in vivo. Combining inflammation-induced preconditioning of dorsal root ganglia in vivo before harvest, with chondroitinase ABC (ChABC) digestion of proteoglycans in vitro allows for significant regeneration across a once potently inhibitory substrate. We then assessed regeneration through the DREZ after root crush in adult rats receiving the combination treatment, ChABC, or zymosan pretreatment alone or no treatment. Regeneration was never observed in untreated animals, and only minimal regeneration occurred in the ChABC- and zymosan-alone groups. However, remarkable regeneration was observed in a majority of animals that received the combination treatment. Regenerated fibers established functional synapses, as demonstrated electrophysiologically by the presence of an H-reflex. Two different postlesion treatment paradigms in which the timing of both zymosan and ChABC administration were varied after injury were ineffective in promoting regeneration. Therefore, zymosan pretreatment, but not posttreatment, of the sensory ganglia, combined with ChABC modification of CSPGs, resulted in robust and functional regeneration of sensory axons through the DREZ after root injury.
The Journal of Neuroscience | 2004
Veronica J. Tom; Catherine Doller; Jerry Silver
Although it has been suggested that astroglia guide pioneering axons during development, the cellular and molecular substrates that direct axon regeneration in adult white matter have not been elucidated. We show that although adult cortical neurons were only able to elaborate very short, highly branched, dendritic-like processes when seeded onto organotypic slice cultures of postnatal day 35 (P35) rat brain containing the corpus callosum, adult dorsal root ganglion (DRG) neurons were able to regenerate lengthy axons within the reactive glial environment of this degenerating white matter tract. The callosum in both P35 slices and adult rat brain was rich in fibronectin, but not laminin. Furthermore, the fibronectin was intimately associated with the intratract astrocytes. Blockade of fibronectin function in situ with an anti-fibronectin antibody dramatically decreased outgrowth of DRG neurites, suggesting that fibronectin plays an important role in axon regeneration in mature white matter. The critical interaction between regrowing axons and astroglial-associated fibronectin in white matter may be an additional factor to consider when trying to understand regeneration failure and devising strategies to promote regeneration.
The Journal of Neuroscience | 2009
Veronica J. Tom; Harra R. Sandrow-Feinberg; Kassi Miller; Lauren Santi; Theresa Connors; Michel A. Lemay; John D. Houlé
Because there currently is no treatment for spinal cord injury, most patients are living with long-standing injuries. Therefore, strategies aimed at promoting restoration of function to the chronically injured spinal cord have high therapeutic value. For successful regeneration, long-injured axons must overcome their poor intrinsic growth potential as well as the inhibitory environment of the glial scar established around the lesion site. Acutely injured axons that regenerate into growth-permissive peripheral nerve grafts (PNGs) reenter host tissue to mediate functional recovery if the distal graft–host interface is treated with chondroitinase ABC (ChABC) to cleave inhibitory chondroitin sulfate proteoglycans in the scar matrix. To determine whether a similar strategy is effective for a chronic injury, we combined grafting of a peripheral nerve into a highly relevant, chronic, cervical contusion site with ChABC treatment of the glial scar and glial cell line-derived neurotrophic factor (GDNF) stimulation of long-injured axons. We tested this combination in two grafting paradigms: (1) a peripheral nerve that was grafted to span a chronic injury site or (2) a PNG that bridged a chronic contusion site with a second, more distal injury site. Unlike GDNF–PBS treatment, GDNF–ChABC treatment facilitated axons to exit the PNG into host tissue and promoted some functional recovery. Electrical stimulation of axons in the peripheral nerve bridge induced c-Fos expression in host neurons, indicative of synaptic contact by regenerating fibers. Thus, our data demonstrate, for the first time, that administering ChABC to a distal graft interface allows for functional axonal regeneration by chronically injured neurons.
Journal of Neurotrauma | 2009
Veronica J. Tom; Rachel Kadakia; Lauren Santi; John D. Houlé
Growth-inhibitory chondroitin sulfate proteoglycans (CSPG) are a primary target for therapeutic strategies after spinal cord injury because of their contribution to the inhibitory nature of glial scar tissue, a major barrier to successful axonal regeneration. Chondroitinase ABC (ChABC) digestion of CSPGs promotes axonal regeneration beyond a lesion site with subsequent functional improvement. ChABC also has been shown to promote sprouting of spared fibers but it is not clear if functional recovery results from such plasticity. Here we sought to better understand the roles rostral or caudal sprouting may play in ChABC-mediated functional improvement. To achieve this, ChABC or vehicle was injected rostral or caudal to a unilateral C5 injury. When injected rostral to a hemisection, ChABC promoted significant sprouting of 5HT+ fibers into dorsal and ventral horns. When ChABC was injected into tissue caudal to a hemisection, no additional sprouting was observed. When injected caudal to a hemicontusion injury, ChABC promoted sprouting of 5HT+ fibers into the ventral horn but not the dorsal horn. None of this sprouting resulted in a change in the synaptic component synapsin, nor did it impact performance in behavioral tests assessing motor function. These data suggest that ChABC-mediated sprouting of spared fibers does not necessarily translate into functional recovery.
Experimental Neurology | 2008
Veronica J. Tom; John D. Houlé
Chondroitin sulfate proteoglycans (CSPG) within the glial scar formed after central nervous system (CNS) injury are thought to play a crucial role in regenerative failure. We previously showed that delivery of the CSPG-digesting enzyme chondroitinase ABC (ChABC) via an osmotic minipump allowed axonal regeneration and functional recovery in a peripheral nerve graft (PNG)-bridging model. In this study, we sought to overcome the technical limitations associated with minipumps by microinjecting ChABC directly into the distal lesion site in the PN bridging model. Microinjection of ChABC immediately rostral and caudal to an injury site resulted in extensive CSPG digestion. We also demonstrate that this delivery technique is relatively atraumatic and does not result in a noticeable inflammatory response. Importantly, microinjections of ChABC into the lesion site permitted more regenerating axons to exit a PNG and reenter spinal cord tissue than saline injections. These results are similar to our previous findings when ChABC was delivered via a minipump and suggest that microinjecting ChABC is an effective method of delivering the potentially therapeutic enzyme directly to an injury site.
Experimental Neurology | 2013
Veronica J. Tom; Harra R. Sandrow-Feinberg; Kassi Miller; Cheryl Domitrovich; Julien Bouyer; Victoria Zhukareva; Michel A. Lemay; John D. Houlé
Although axons lose some of their intrinsic capacity for growth after their developmental period, some axons retain the potential for regrowth after injury. When provided with a growth-promoting substrate such as a peripheral nerve graft (PNG), severed axons regenerate into and through the graft; however, they stop when they reach the glial scar at the distal graft-host interface that is rich with inhibitory chondroitin sulfate proteoglycans. We previously showed that treatment of a spinal cord injury site with chondroitinase (ChABC) allows axons within the graft to traverse the scar and reinnervate spinal cord, where they form functional synapses. While this improvement in outgrowth was significant, it still represented only a small percentage (<20%) of axons compared to the total number of axons that regenerated into the PNG. Here we tested whether providing exogenous brain-derived neurotrophic factor (BDNF) via lentivirus in tissue distal to the PNG would augment regeneration beyond a ChABC-treated glial interface. We found that ChABC treatment alone promoted axonal regeneration but combining ChABC with BDNF-lentivirus did not increase the number of axons that regenerated back into spinal cord. Combining BDNF with ChABC did increase the number of spinal cord neurons that were trans-synaptically activated during electrical stimulation of the graft, as indicated by c-Fos expression, suggesting that BDNF overexpression improved the functional significance of axons that did reinnervate distal spinal cord tissue.
Neurotherapeutics | 2011
Marie-Pascale Côté; Arthi Amin; Veronica J. Tom; John D. Houlé
SummaryTraumatic insults to the spinal cord induce both immediate mechanical damage and subsequent tissue degeneration leading to a substantial physiological, biochemical, and functional reorganization of the spinal cord. Various spinal cord injury (SCI) models have shown the adaptive potential of the spinal cord and its limitations in the case of total or partial absence of supraspinal influence. Meaningful recovery of function after SCI will most likely result from a combination of therapeutic strategies, including neural tissue transplants, exogenous neurotrophic factors, elimination of inhibitory molecules, functional sensorimotor training, and/or electrical stimulation of paralyzed muscles or spinal circuits. Peripheral nerve grafts provide a growth-permissive substratum and local neurotrophic factors to enhance the regenerative effort of axotomized neurons when grafted into the site of injury. Regenerating axons can be directed via the peripheral nerve graft toward an appropriate target, but they fail to extend beyond the distal graft–host interface because of the deposition of growth inhibitors at the site of SCI. One method to facilitate the emergence of axons from a graft into the spinal cord is to digest the chondroitin sulfate proteoglycans that are associated with a glial scar. Importantly, regenerating axons that do exit the graft are capable of forming functional synaptic contacts. These results have been demonstrated in acute injury models in rats and cats and after a chronic injury in rats and have important implications for our continuing efforts to promote structural and functional repair after SCI.
The Journal of Neuroscience | 2013
Shaoping Hou; Veronica J. Tom; Lori Graham; Paul Lu; Armin Blesch
High-level spinal cord injury can lead to cardiovascular dysfunction, including disordered hemodynamics at rest and autonomic dysreflexia during noxious stimulation. To restore supraspinal control of sympathetic preganglionic neurons (SPNs), we grafted embryonic brainstem-derived neural stem cells (BS-NSCs) or spinal cord-derived neural stem cells (SC-NSCs) expressing green fluorescent protein into the T4 complete transection site of adult rats. Animals with injury alone served as controls. Implanting of BS-NSCs but not SC-NSCs resulted in recovery of basal cardiovascular parameters, whereas both cell grafts alleviated autonomic dysreflexia. Subsequent spinal cord retransection above the graft abolished the recovery of basal hemodynamics and reflexic response. BS-NSC graft-derived catecholaminergic and serotonergic neurons showed remarkable long-distance axon growth and topographical innervation of caudal SPNs. Anterograde tracing indicated growth of medullar axons into stem cell grafts and formation of synapses. Thus, grafted embryonic brainstem-derived neurons can act as functional relays to restore supraspinal regulation of denervated SPNs, thereby contributing to cardiovascular functional improvement.