Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John D. Kessler is active.

Publication


Featured researches published by John D. Kessler.


Science | 2011

A Persistent Oxygen Anomaly Reveals the Fate of Spilled Methane in the Deep Gulf of Mexico

John D. Kessler; David L. Valentine; Molly C. Redmond; Mengran Du; Eric W. Chan; Stephanie D. Mendes; Erik W. Quiroz; Christie J. Villanueva; Stephani S. Shusta; Lindsay M. Werra; Shari A. Yvon-Lewis; Thomas C. Weber

Methane released during the Deepwater Horizon blowout was degraded by methanotrophic bacteria. Methane was the most abundant hydrocarbon released during the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. Beyond relevancy to this anthropogenic event, this methane release simulates a rapid and relatively short-term natural release from hydrates into deep water. Based on methane and oxygen distributions measured at 207 stations throughout the affected region, we find that within ~120 days from the onset of release ~3.0 × 1010 to 3.9 × 1010 moles of oxygen were respired, primarily by methanotrophs, and left behind a residual microbial community containing methanotrophic bacteria. We suggest that a vigorous deepwater bacterial bloom respired nearly all the released methane within this time, and that by analogy, large-scale releases of methane from hydrate in the deep ocean are likely to be met by a similarly rapid methanotrophic response.


Science | 2010

Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill

David L. Valentine; John D. Kessler; Molly C. Redmond; Stephanie D. Mendes; Monica B. Heintz; Christopher Farwell; Lei Hu; Franklin S. Kinnaman; Shari A. Yvon-Lewis; Mengran Du; Eric W. Chan; Fenix Garcia Tigreros; Christie J. Villanueva

Diving into Deep Water The Deepwater Horizon oil spill in the Gulf of Mexico was one of the largest oil spills on record. Its setting at the bottom of the sea floor posed an unanticipated risk as substantial amounts of hydrocarbons leaked into the deepwater column. Three separate cruises identified and sampled deep underwater hydrocarbon plumes that existed in May and June, 2010—before the well head was ultimately sealed. Camilli et al. (p. 201; published online 19 August) used an automated underwater vehicle to assess the dimensions of a stabilized, diffuse underwater plume of oil that was 22 miles long and estimated the daily quantity of oil released from the well, based on the concentration and dimensions of the plume. Hazen et al. (p. 204; published online 26 August) also observed an underwater plume at the same depth and found that hydrocarbon-degrading bacteria were enriched in the plume and were breaking down some parts of the oil. Finally, Valentine et al. (p. 208; published online 16 September) found that natural gas, including propane and ethane, were also present in hydrocarbon plumes. These gases were broken down quickly by bacteria, but primed the system for biodegradation of larger hydrocarbons, including those comprising the leaking crude oil. Differences were observed in dissolved oxygen levels in the plumes (a proxy for bacterial respiration), which may reflect differences in the location of sampling or the aging of the plumes. Hydrocarbon gases were the first compounds that bacteria degraded in deep underwater petroleum plumes. The Deepwater Horizon event resulted in suspension of oil in the Gulf of Mexico water column because the leakage occurred at great depth. The distribution and fate of other abundant hydrocarbon constituents, such as natural gases, are also important in determining the impact of the leakage but are not yet well understood. From 11 to 21 June 2010, we investigated dissolved hydrocarbon gases at depth using chemical and isotopic surveys and on-site biodegradation studies. Propane and ethane were the primary drivers of microbial respiration, accounting for up to 70% of the observed oxygen depletion in fresh plumes. Propane and ethane trapped in the deep water may therefore promote rapid hydrocarbon respiration by low-diversity bacterial blooms, priming bacterial populations for degradation of other hydrocarbons in the aging plume.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution

Thomas B. Ryerson; John D. Kessler; Elizabeth B. Kujawinski; Christopher M. Reddy; David L. Valentine; Elliot Atlas; D. R. Blake; Joost A. de Gouw; Simone Meinardi; D. D. Parrish; J. Peischl; Jeffrey S. Seewald; Carsten Warneke

Detailed airborne, surface, and subsurface chemical measurements, primarily obtained in May and June 2010, are used to quantify initial hydrocarbon compositions along different transport pathways (i.e., in deep subsurface plumes, in the initial surface slick, and in the atmosphere) during the Deepwater Horizon oil spill. Atmospheric measurements are consistent with a limited area of surfacing oil, with implications for leaked hydrocarbon mass transport and oil drop size distributions. The chemical data further suggest relatively little variation in leaking hydrocarbon composition over time. Although readily soluble hydrocarbons made up ∼25% of the leaking mixture by mass, subsurface chemical data show these compounds made up ∼69% of the deep plume mass; only ∼31% of the deep plume mass was initially transported in the form of trapped oil droplets. Mass flows along individual transport pathways are also derived from atmospheric and subsurface chemical data. Subsurface hydrocarbon composition, dissolved oxygen, and dispersant data are used to assess release of hydrocarbons from the leaking well. We use the chemical measurements to estimate that (7.8 ± 1.9) × 106 kg of hydrocarbons leaked on June 10, 2010, directly accounting for roughly three-quarters of the total leaked mass on that day. The average environmental release rate of (10.1 ± 2.0) × 106 kg/d derived using atmospheric and subsurface chemical data agrees within uncertainties with the official average leak rate of (10.2 ± 1.0) × 106 kg/d derived using physical and optical methods.


Geobiology | 2011

The methane cycle in ferruginous Lake Matano

Sean A. Crowe; Sergei Katsev; Karla Leslie; Arne Sturm; Cédric Magen; Sulung Nomosatryo; Mary A. Pack; John D. Kessler; William S. Reeburgh; Jennifer A. Roberts; Luis A. González; G. Douglas Haffner; Alfonso Mucci; Bjørn Sundby; David A. Fowle

In Lake Matano, Indonesia, the worlds largest known ferruginous basin, more than 50% of authigenic organic matter is degraded through methanogenesis, despite high abundances of Fe (hydr)oxides in the lake sediments. Biogenic CH₄ accumulates to high concentrations (up to 1.4 mmol L⁻¹) in the anoxic bottom waters, which contain a total of 7.4 × 10⁵ tons of CH₄. Profiles of dissolved inorganic carbon (ΣCO₂) and carbon isotopes (δ¹³C) show that CH₄ is oxidized in the vicinity of the persistent pycnocline and that some of this CH₄ is likely oxidized anaerobically. The dearth of NO₃⁻ and SO₄²⁻ in Lake Matano waters suggests that anaerobic methane oxidation may be coupled to the reduction of Fe (and/or Mn) (hydr)oxides. Thermodynamic considerations reveal that CH₄ oxidation coupled to Fe(III) or Mn(III/IV) reduction would yield sufficient free energy to support microbial growth at the substrate levels present in Lake Matano. Flux calculations imply that Fe and Mn must be recycled several times directly within the water column to balance the upward flux of CH₄. 16S gene cloning identified methanogens in the anoxic water column, and these methanogens belong to groups capable of both acetoclastic and hydrogenotrophic methanogenesis. We find that methane is important in C cycling, even in this very Fe-rich environment. Such Fe-rich environments are rare on Earth today, but they are analogous to conditions in the ferruginous oceans thought to prevail during much of the Archean Eon. By analogy, methanogens and methanotrophs could have formed an important part of the Archean Ocean ecosystem.


Journal of Geophysical Research | 2011

Methane sources and sinks in Lake Kivu

Natacha Pasche; Martin Schmid; Francisco Vazquez; Carsten J. Schubert; Alfred Wüest; John D. Kessler; Mary A. Pack; William S. Reeburgh; Helmut Bürgmann

Unique worldwide, Lake Kivu stores enormous amounts of CH 4 and CO 2 . A recent study reported that CH 4 concentrations in the lake have increased by up to 15% in the last 30 years and that accumulation at this rate could lead to catastrophic outgassing by ∼2100. This study investigates the present-day CH 4 formation and oxidation in Lake Kivu. Analyses of 14C and 13C in CH 4 and potential carbon sources revealed that below 260 m, an unusually high ∼65% of the CH 4 originates either from reduction of geogenic CO 2 with mostly geogenic H 2 or from direct inflows of geogenic CH 4 . Aerobic CH 4 oxidation, performed by close relatives of type X CH 4 -oxidizing bacteria, is the main process preventing CH 4 from escaping to the atmosphere. Anaerobic CH 4 oxidation, carried out by CH 4 -oxidizing archaea in the SO 4 2--reducing zone, was also detected but is limited by the availability of sulfate. Changes in 14C CH4 and 13C CH4 since the 1970s suggest that the amount of CH 4 produced from degrading organic material has increased due to higher accumulation of organic matter. This, as well as the sudden onset of carbonates in the 1960s, has previously been explained by three environmental changes: (1) introduction of nonnative fish, (2) amplified subaquatic inflows following hydrological changes, and (3) increased external inputs due to the fast growing population. The resulting enhancement of primary production and organic matter sedimentation likely caused CH 4 to increase. However, given the large proportion of old CH 4 carbon, we cannot exclude an increased inflow of geogenic H 2 or CH 4 . Copyright 2011 by the American Geophysical Union.


Reviews of Geophysics | 2017

The interaction of climate change and methane hydrates

Carolyn D. Ruppel; John D. Kessler

Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.


Environmental Science & Technology | 2012

Assessment of the Spatial and Temporal Variability of Bulk Hydrocarbon Respiration Following the Deepwater Horizon Oil Spill

Mengran Du; John D. Kessler

Following the Deepwater Horizon blowout, the respiration of hydrocarbons dissolved and trapped in the deep and intermediate waters of the Gulf of Mexico imparted a significant reduction in dissolved oxygen (DO) concentration and stimulated a bloom of bacteria biomass. The investigation of 1316 DO profiles measured from 11 May until 20 September 2010 revealed the spatial and temporal variability of bulk hydrocarbon respiration in these deep and intermediate plumes. These analyses suggest that while there were occasional reversals in direction, the general movement of these plumes was toward the southwest and that the cumulative loss of DO peaked from 14 August through 18 September at a value of 18.9 ± 3.8 Gmol. These oxygen-based analyses were extended to determine a first-order estimate of the total release of hydrocarbon mass to the environment that must be less than or equal to the true release based on the inherent assumptions; these analyses estimate a total environmental release of 0.47 ± 0.09 Tg of hydrocarbons. These analyses estimate a total mass of 0.18 ± 0.05 Tg hydrocarbons in the plume layers fully respired to CO(2), 0.10 ± 0.08 Tg hydrocarbons incorporated into biomass, and the biomass/hydrocarbon conversion efficiency of 0.36 ± 0.11 mg biomass/mg hydrocarbon. These analyses also suggest that methane was the dominant hydrocarbon controlling the bulk respiration rates, that the rates peaked around 11 July, and that the addition of dispersants to the wellhead effectively accelerated hydrocarbon respiration.


Journal of Geophysical Research | 2008

A survey of methane isotope abundance (14C, 13C, 2H) from five nearshore marine basins that reveals unusual radiocarbon levels in subsurface waters

John D. Kessler; William S. Reeburgh; David L. Valentine; F. S. Kinnaman; Edward T. Peltzer; Peter G. Brewer; John Southon; Stanley C. Tyler

Methane (CH4) in the subsurface ocean is often supersaturated compared to equilibrium with the modern atmosphere. In order to investigate sources of CH4 to the subsurface ocean, isotope surveys (14C-CH4, δ13 C-CH4, δ2 H-CH4) were conducted at five locations: Skan Bay (SB), Santa Barbara Basin (SBB), Santa Monica Basin (SMB), Cariaco Basin (CB), and the Guaymas Basin (GB). Depth distributions of CH4 concentration and isotopic abundance were determined for both the sediment and water column at the SB, SBB, SMB, and CB sites; CH4 emitted from seeps on the continental shelf adjacent to the SBB as well as seeps and decomposing clathrate hydrates in the GB was also collected, purified, and analyzed. Methane isotope distributions in the sediments were consistent with known methanogenic and methanotrophic activity; seep- and clathrate-hydrate-derived CH4 was found to be depleted in radiocarbon. However, surprising results were obtained in the water column at all sites investigated. In SB the radiocarbon content of the subsurface CH4 concentration maximum was on average 41% less than its suspected sediment CH4 source, suggesting CH4 seepage in the bay. In the SBB, SMB, and CB, the 14C-CH4 contents in the subsurface ocean were 1.2 to 3.6 times greater than modem carbon quantities suggesting a source of 14C from atmospheric nuclear weapons testing, nuclear power plant effluents, or cosmogenic isotope production. Copyright 2008 by the American Geophysical Union.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study

Adina Paytan; Alanna L. Lecher; Natasha T. Dimova; Katy J. Sparrow; Fenix Garcia-Tigreros Kodovska; Joseph Murray; Slawomir Tulaczyk; John D. Kessler

Significance Methane, a greenhouse gas, contributes to global warming. We show that methane-rich water from the seasonally thawed active layer in the Arctic flows into Toolik Lake, Alaska. This may be an important previously unrecognized conduit for methane transport and emissions in Arctic lakes. The controls on methane input from the active layer are fundamentally different than those affecting methane production within lakes, and the response of these processes to climate and environmental change is also distinct. The accuracy of predictions of methane emissions and ultimately the extent of climate change that can be expected in the Arctic depend on a better understanding of methane dynamics in the region, including the controls over methane production and transport processes within the active layer. Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 104 nM, 61.6 dpm⋅m−3, and 4.5 × 105 dpm⋅m−3 compared with 1.3 × 102 nM, 5.7 dpm⋅m−3, and 4.4 × 103 dpm⋅m−3, respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m−2⋅y−1) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r2 > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs.


Environmental Science & Technology | 2014

Using discriminant analysis to determine sources of salinity in shallow groundwater prior to hydraulic fracturing.

Laura K. Lautz; Gregory D. Hoke; Zunli Lu; Donald I. Siegel; Kayla Christian; John D. Kessler; Natalie G. Teale

High-volume hydraulic fracturing (HVHF) gas-drilling operations in the Marcellus Play have raised environmental concerns, including the risk of groundwater contamination. Fingerprinting water impacted by gas-drilling operations is not trivial given other potential sources of contamination. We present a multivariate statistical modeling framework for developing a quantitative, geochemical fingerprinting tool to distinguish sources of high salinity in shallow groundwater. The model was developed using new geochemical data for 204 wells in New York State (NYS), which has a HVHF moratorium and published data for additional wells in NYS and several salinity sources (Appalachian Basin brines, road salt, septic effluent, and animal waste). The model incorporates a stochastic simulation to predict the geochemistry of high salinity (>20 mg/L Cl) groundwater impacted by different salinity sources and then employs linear discriminant analysis to classify samples from different populations. Model results indicate Appalachian Basin brines are the primary source of salinity in 35% of sampled NYS groundwater wells with >20 mg/L Cl. The model provides an effective means for differentiating groundwater impacted by basin brines versus other contaminants. Using this framework, similar discriminatory tools can be derived for other regions from background water quality data.

Collaboration


Dive into the John D. Kessler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolyn D. Ruppel

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge