John E. Heuser
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John E. Heuser.
Cell Reports | 2012
Itsunari Minami; Kohei Yamada; Tomomi Otsuji; Takuya Yamamoto; Yan Shen; Shinya Otsuka; Shin Kadota; Nobuhiro Morone; Maneesha Barve; Yasuyuki Asai; Tatyana Tenkova-Heuser; John E. Heuser; Motonari Uesugi; Kazuhiro Aiba; Norio Nakatsuji
Human pluripotent stem cells (hPSCs), including embryonic stem cells and induced pluripotent stem cells, are potentially useful in regenerative therapies for heart disease. For medical applications, clinical-grade cardiac cells must be produced from hPSCs in a defined, cost-effective manner. Cell-based screening led to the discovery of KY02111, a small molecule that promotes differentiation of hPSCs to cardiomyocytes. Although the direct target of KY02111 remains unknown, results of the present study suggest that KY02111 promotes differentiation by inhibiting WNT signaling in hPSCs but in a manner that is distinct from that of previously studied WNT inhibitors. Combined use of KY02111 and WNT signaling modulators produced robust cardiac differentiation of hPSCs in a xeno-free, defined medium, devoid of serum and any kind of recombinant cytokines and hormones, such as BMP4, Activin A, or insulin. The methodology has potential as a means for the practical production of human cardiomyocytes for regeneration therapies.
Mbio | 2013
Chia Hung; Yizhou Zhou; Jerome S. Pinkner; Karen W. Dodson; Jan R. Crowley; John E. Heuser; Matthew R. Chapman; Maria Hadjifrangiskou; Jeffrey P. Henderson; Scott J. Hultgren
ABSTRACT Bacterial biofilms are ubiquitous in nature, and their resilience is derived in part from a complex extracellular matrix that can be tailored to meet environmental demands. Although common developmental stages leading to biofilm formation have been described, how the extracellular components are organized to allow three-dimensional biofilm development is not well understood. Here we show that uropathogenic Escherichia coli (UPEC) strains produce a biofilm with a highly ordered and complex extracellular matrix (ECM). We used electron microscopy (EM) techniques to image floating biofilms (pellicles) formed by UPEC. EM revealed intricately constructed substructures within the ECM that encase individual, spatially segregated bacteria with a distinctive morphology. Mutational and biochemical analyses of these biofilms confirmed curli as a major matrix component and revealed important roles for cellulose, flagella, and type 1 pili in pellicle integrity and ECM infrastructure. Collectively, the findings of this study elucidated that UPEC pellicles have a highly organized ultrastructure that varies spatially across the multicellular community. IMPORTANCE Bacteria can form biofilms in diverse niches, including abiotic surfaces, living cells, and at the air-liquid interface of liquid media. Encasing these cellular communities is a self-produced extracellular matrix (ECM) that can be composed of proteins, polysaccharides, and nucleic acids. The ECM protects biofilm bacteria from environmental insults and also makes the dissolution of biofilms very challenging. As a result, formation of biofilms within humans (during infection) or on industrial material (such as water pipes) has detrimental and costly effects. In order to combat bacterial biofilms, a better understanding of components required for biofilm formation and the ECM is required. This study defined the ECM composition and architecture of floating pellicle biofilms formed by Escherichia coli. Bacteria can form biofilms in diverse niches, including abiotic surfaces, living cells, and at the air-liquid interface of liquid media. Encasing these cellular communities is a self-produced extracellular matrix (ECM) that can be composed of proteins, polysaccharides, and nucleic acids. The ECM protects biofilm bacteria from environmental insults and also makes the dissolution of biofilms very challenging. As a result, formation of biofilms within humans (during infection) or on industrial material (such as water pipes) has detrimental and costly effects. In order to combat bacterial biofilms, a better understanding of components required for biofilm formation and the ECM is required. This study defined the ECM composition and architecture of floating pellicle biofilms formed by Escherichia coli.
eLife | 2013
Hani Suleiman; Lei Zhang; Robyn Roth; John E. Heuser; Jeffrey H. Miner; Andrey S. Shaw; Adish Dani
In multicellular organisms, proteins of the extracellular matrix (ECM) play structural and functional roles in essentially all organs, so understanding ECM protein organization in health and disease remains an important goal. Here, we used sub-diffraction resolution stochastic optical reconstruction microscopy (STORM) to resolve the in situ molecular organization of proteins within the kidney glomerular basement membrane (GBM), an essential mediator of glomerular ultrafiltration. Using multichannel STORM and STORM-electron microscopy correlation, we constructed a molecular reference frame that revealed a laminar organization of ECM proteins within the GBM. Separate analyses of domains near the N- and C-termini of agrin, laminin, and collagen IV in mouse and human GBM revealed a highly oriented macromolecular organization. Our analysis also revealed disruptions in this GBM architecture in a mouse model of Alport syndrome. These results provide the first nanoscopic glimpse into the organization of a complex ECM. DOI: http://dx.doi.org/10.7554/eLife.01149.001
Stem cell reports | 2014
Tomomi Otsuji; Jiang Bin; Azumi Yoshimura; Misayo Tomura; Daiki Tateyama; Itsunari Minami; Yoshihiro Yoshikawa; Kazuhiro Aiba; John E. Heuser; Taito Nishino; Kouichi Hasegawa; Norio Nakatsuji
Summary Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production.
Blood | 2012
Takayuki Tanaka; Kazutoshi Takahashi; Mayu Yamane; Shota Tomida; Saori Nakamura; Koichi Oshima; Akira Niwa; Ryuta Nishikomori; Naotomo Kambe; Hideki Hara; Masao Mitsuyama; Nobuhiro Morone; John E. Heuser; Takuya Yamamoto; Akira Watanabe; Aiko Sato-Otsubo; Seishi Ogawa; Isao Asaka; Toshio Heike; Shinya Yamanaka; Tatsutoshi Nakahata; Megumu Saito
Chronic infantile neurologic cutaneous and articular (CINCA) syndrome is an IL-1-driven autoinflammatory disorder caused mainly by NLRP3 mutations. The pathogenesis of CINCA syndrome patients who carry NLRP3 mutations as somatic mosaicism has not been precisely described because of the difficulty in separating individual cells based on the presence or absence of the mutation. Here we report the generation of NLRP3-mutant and nonmutant-induced pluripotent stem cell (iPSC) lines from 2 CINCA syndrome patients with somatic mosaicism, and describe their differentiation into macrophages (iPS-MPs). We found that mutant cells are predominantly responsible for the pathogenesis in these mosaic patients because only mutant iPS-MPs showed the disease relevant phenotype of abnormal IL-1β secretion. We also confirmed that the existing anti-inflammatory compounds inhibited the abnormal IL-1β secretion, indicating that mutant iPS-MPs are applicable for drug screening for CINCA syndrome and other NLRP3-related inflammatory conditions. Our results illustrate that patient-derived iPSCs are useful for dissecting somatic mosaicism and that NLRP3-mutant iPSCs can provide a valuable platform for drug discovery for multiple NLRP3-related disorders.
Journal of the American Chemical Society | 2012
Tomohiro Numata; Tatsuya Murakami; Fumiaki Kawashima; Nobuhiro Morone; John E. Heuser; Yuta Takano; Kei Ohkubo; Shunichi Fukuzumi; Yasuo Mori; Hiroshi Imahori
The control of ion transport across cell membranes by light is an attractive strategy that allows targeted, fast control of precisely defined events in the biological membrane. Here we report a novel general strategy for the control of membrane potential and ion transport by using charge-separation molecules and light. Delivery of charge-separation molecules to the plasma membrane of PC12 cells by a membranous nanocarrier and subsequent light irradiation led to depolarization of the membrane potential as well as inhibition of the potassium ion flow across the membrane. Photoregulation of the cell membrane potential and ion transport by using charge-separation molecules is highly promising for control of cell functions.
The Journal of Neuroscience | 2015
Kansai Fukumitsu; Kazuto Fujishima; Azumi Yoshimura; You Kure Wu; John E. Heuser; Mineko Kengaku
The distribution of mitochondria within mature, differentiated neurons is clearly adapted to their regional physiological needs and can be perturbed under various pathological conditions, but the function of mitochondria in developing neurons has been less well studied. We have studied mitochondrial distribution within developing mouse cerebellar Purkinje cells and have found that active delivery of mitochondria into their dendrites is a prerequisite for proper dendritic outgrowth. Even when mitochondria in the Purkinje cell bodies are functioning normally, interrupting the transport of mitochondria into their dendrites severely disturbs dendritic growth. Additionally, we find that the growth of atrophic dendrites lacking mitochondria can be rescued by activating ATP-phosphocreatine exchange mediated by creatine kinase (CK). Conversely, inhibiting cytosolic CKs decreases dendritic ATP levels and also disrupts dendrite development. Mechanistically, this energy depletion appears to perturb normal actin dynamics and enhance the aggregation of cofilin within growing dendrites, reminiscent of what occurs in neurons overexpressing the dephosphorylated form of cofilin. These results suggest that local ATP synthesis by dendritic mitochondria and ATP-phosphocreatine exchange act synergistically to sustain the cytoskeletal dynamics necessary for dendritic development.
ACS Nano | 2013
Simon Mathew; Tatsuya Murakami; Hirotaka Nakatsuji; Haruki Okamoto; Nobuhiro Morone; John E. Heuser; Mitsuru Hashida; Hiroshi Imahori
A hydrophobic gadolinium bis(naphthalocyanine) sandwich complex (GdSand) possessing several absorbances across visible and infrared wavelengths (up to 2500 nm) was solubilized in aqueous solution by uptake into a nascent mutant high-density lipoprotein (HDL) nanocarrier. The HDL nanocarrier was additionally functionalized with a trans-activator of transcription peptide sequence to promote efficient cell penetration of the drug delivery system (cpHDL). The dye-loaded nanocarrier (GdSand@cpHDL) exhibited photothermal heat generation properties upon irradiation with near-infrared (NIR) laser light, with controllable heat generation abilities as a function of the incident laser light power. Comparison of the photothermal behavior of the dyes GdSand and the well-explored molecular photothermal agent indocyanine green (ICG) in the cpHDL nanocarrier (i.e., ICG@cpHDL) revealed two significant advantages of GdSand@cpHDL: (1) the ability to maintain elevated temperatures upon light absorption for extended periods of time, with a reduced degree of self-destruction of the dye, and (2) exclusive photothermal heat generation with no detectable singlet oxygen production leading to improved integrity of the cpHDL nanocarrier after irradiation. Finally, GdSand@cpHDL was successfully subjected to an in vitro study against NCI-H460 human lung cancer cells, demonstrating the proof-of-principle utility of lanthanide sandwich complexes in photothermal therapeutic applications.
ACS Nano | 2014
Tatsuya Murakami; Hirotaka Nakatsuji; Nobuhiro Morone; John E. Heuser; Fumiyoshi Ishidate; Mitsuru Hashida; Hiroshi Imahori
Surface engineering of mesoscopic metal nanoparticles to increase biocompatibility and cell interaction is important for improvement of their therapeutic properties. Here, we describe a strategy to stabilize mesoscopic metal nanoparticles and to enhance their cell interaction by stepwise addition of (Z)-9-octadecenoate (oleate) and a cell-penetrating peptide-fused high-density lipoprotein (cpHDL). Oleate replaces a cytotoxic dispersant on the surface of gold nanorods (AuNRs), which enables subsequent cpHDL binding without causing aggregation. Notably, these two lipidic dispersants are probably intercalated on the surface. This procedure was also used to stabilize 20 nm spherical gold nanoparticles and 40 nm aggregates of 10 nm magnetite nanoparticles. cpHDL-bound AuNRs were internalized greater than 80 times more efficiently than poly(ethylene glycol)-conjugated AuNRs and were able to elicit cancer cell photoablation.
Toxins | 2013
Peter A. Keyel; Robyn Roth; Wayne M. Yokoyama; John E. Heuser; Russell D. Salter
Pore-forming toxins are utilized by bacterial and mammalian cells to exert pathogenic effects and induce cell lysis. In addition to rapid plasma membrane repair, macrophages respond to pore-forming toxins through activation of the NLRP3 inflammasome, leading to IL-1β secretion and pyroptosis. The structural determinants of pore-forming toxins required for NLRP3 activation remain unknown. Here, we demonstrate using streptolysin O (SLO) that pore-formation controls IL-1β secretion and direct toxicity. An SLO mutant incapable of pore-formation did not promote direct killing, pyroptosis or IL-1β production. This indicated that pore formation is necessary for inflammasome activation. However, a partially active mutant (SLO N402C) that was less toxic to macrophages than wild-type SLO, even at concentrations that directly lysed an equivalent number of red blood cells, enhanced IL-1β production but did not alter pyroptosis. This suggests that direct lysis may attenuate immune responses by preventing macrophages from successfully repairing their plasma membrane and elaborating more robust cytokine production. We suggest that mutagenesis of pore-forming toxins represents a strategy to enhance adjuvant activity.