Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John E. Major is active.

Publication


Featured researches published by John E. Major.


Theoretical and Applied Genetics | 2003

Old-growth red spruce forests as reservoirs of genetic diversity and reproductive fitness

Alex Mosseler; John E. Major; Om P. Rajora

Abstract. Old-growth forests are assumed to be potential reservoirs of genetic diversity for the dominant tree species, yet there is little empirical evidence for this assumption. Our aim was to characterize the relationship of stand traits, such as age, height and stem diameter, with the genetic and reproductive status of old-growth and older second-growth stands of red spruce (Picea rubens Sarg.) in eastern Canada. We found strong relationships between height growth (a fitness trait) and measures of genetic diversity based on allozyme analyses in red spruce. The negative relationship between height and the proportion of rare alleles suggests that high proportions of these rare alleles may be deleterious to growth performance. Latent genetic potential, however, showed a significant and positive relationship with height. Stand age was not correlated to height, but was correlated to seedling progeny height. In late-successional species such as red spruce, age and size (e.g., height and stem diameter) relationships may be strongly influenced by local stand disturbance dynamics that determine availability of light, growing space, moisture and nutrients. In larger and older stands, age appeared to provide a good surrogate measure or indicator for genetic diversity and progeny height growth. However, in smaller and more isolated populations, these age and fitness relationships may be strongly influenced by the effects of inbreeding and genetic drift. Therefore, older populations or old-growth forests may represent superior seed sources, but only if they are also of sufficient size and structure (e.g., stem density and spatial family structure) to avoid the effects of inbreeding and genetic drift. Thus, larger and older forests appear to have an important evolutionary role as reservoirs of both genetic diversity and reproductive fitness. Given the rapid environmental changes anticipated (as a result of climate change, increasing population isolation through fragmentation, or following the introduction of exotic pests and diseases) these older populations of trees may have a valuable function in maintaining the adaptive potential of tree species.


BMC Genomics | 2010

Near-saturated and complete genetic linkage map of black spruce (Picea mariana)

Bum-Yong Kang; Ishminder Mann; John E. Major; Om P. Rajora

BackgroundGenetic maps provide an important genomic resource for understanding genome organization and evolution, comparative genomics, mapping genes and quantitative trait loci, and associating genomic segments with phenotypic traits. Spruce (Picea) genomics work is quite challenging, mainly because of extremely large size and highly repetitive nature of its genome, unsequenced and poorly understood genome, and the general lack of advanced-generation pedigrees. Our goal was to construct a high-density genetic linkage map of black spruce (Picea mariana, 2n = 24), which is a predominant, transcontinental species of the North American boreal and temperate forests, with high ecological and economic importance.ResultsWe have developed a near-saturated and complete genetic linkage map of black spruce using a three-generation outbred pedigree and amplified fragment length polymorphism (AFLP), selectively amplified microsatellite polymorphic loci (SAMPL), expressed sequence tag polymorphism (ESTP), and microsatellite (mostly cDNA based) markers. Maternal, paternal, and consensus genetic linkage maps were constructed. The maternal, paternal, and consensus maps in our study consistently coalesced into 12 linkage groups, corresponding to the haploid chromosome number (1n = 1x = 12) of 12 in the genus Picea. The maternal map had 816 and the paternal map 743 markers distributed over 12 linkage groups each. The consensus map consisted of 1,111 markers distributed over 12 linkage groups, and covered almost the entire (> 97%) black spruce genome. The mapped markers included 809 AFLPs, 255 SAMPL, 42 microsatellites, and 5 ESTPs. Total estimated length of the genetic map was 1,770 cM, with an average of one marker every 1.6 cM. The maternal, paternal and consensus genetic maps aligned almost perfectly.ConclusionWe have constructed the first high density to near-saturated genetic linkage map of black spruce, with greater than 97% genome coverage. Also, this is the first genetic map based on a three-generation outbred pedigree in the genus Picea. The genome length in P. mariana is likely to be about 1,800 cM. The genetic maps developed in our study can serve as a reference map for various genomics studies and applications in Picea a nd Pinaceae.


Genome | 2011

A high-density genetic linkage map of a black spruce (Picea mariana) red spruce (Picea rubens) interspecific hybrid

Bum-YongKangB.-Y. Kang; John E. Major; Om P. Rajora

Genetic maps provide an important genomic resource of basic and applied significance. Spruce (Picea) has a very large genome size (between 0.85 × 1010 and 2.4 × 1010 bp; 8.5-24.0 pg/1C, a mean of 17.7 pg/1C ). We have constructed a near-saturated genetic linkage map for an interspecific backcross (BC1) hybrid of black spruce (BS; Picea mariana (Mill.) B.S.P.) and red spruce (RS; Picea rubens Sarg.), using selectively amplified microsatellite polymorphic loci (SAMPL) markers. A total of 2284 SAMPL markers were resolved using 31 SAMPL-MseI selective nucleotide primer combinations. Of these, 1216 SAMPL markers showing Mendelian segregation were mapped, whereas 1068 (46.8%) SAMPL fragments showed segregation distortion at α = 0.05. Maternal, paternal, and consensus maps consistently coalesced into 12 linkage groups, corresponding to the haploid chromosome number (1n = 1x = 12) of 12 in the genus Picea. The maternal BS map consisted of 814 markers distributed over 12 linkage groups, covering 1670 cM, with a mean map distance of 2.1 cM between adjacent markers. The paternal BS × RS map consisted of 773 markers distributed over 12 linkage groups, covering 1563 cM, with a mean map distance of 2.0 cM between adjacent markers. The consensus interspecific hybrid BC1 map consisted of 1216 markers distributed over 12 linkage groups, covering 1865 cM (98% genome coverage), with a mean map distance of 1.5 cM between adjacent markers. The genetic map reported here provides an important genomic resource in Picea, Pinaceae, and conifers.


Conservation Genetics | 2004

Reproductive and genetic characteristics of rare, disjunct pitch pine populations at the northern limits of its range in Canada

Alex Mosseler; O.P. Rajora; John E. Major; K.H. kim

Pitch pine, Pinus rigida Mill., is a rare species in Canada, existing as a disjunct population in the St. Lawrence River Valley in eastern Ontario and two northern outlier stands in southern Quebec along Canadas southern border with the United States. Reproductive and genetic characteristics of these small, scattered stands were investigated to develop a foundation for management and restoration in the event of range expansion northwards under anticipated climate warming. Seed yields and seed quality appear to be comparable to other eastern conifers, and to pitch pine at the center of its geographic range. For seed and seedling growth traits, most of the variation was attributable to differences among trees within stands and, to a lesser extent, among stands within a population; whereas the population effect was non-significant. For reproductive traits, such as numbers of filled and empty seeds per cone, reproductive efficiency, and inbreeding estimates, high levels of variation (ranging from 26% to 33%) were found among stands, suggesting that stand structural features, such as stand size and tree density within stands, play an important role in pollination environment and overall reproductive success. Estimates of genetic diversity at 32 allozyme gene loci indicate that these small, isolated stands have maintained relatively high levels of genetic diversity compared with populations at the center of its geographic range, and also relative to other widely dispersed eastern conifers. The relatively high levels of viable seed production and genetic diversity in native pitch pine populations indicate that native Canadian populations may be suitable seed sources for species restoration and range expansion in Canada.


Trees-structure and Function | 2007

Comparative nutrient economy, stable isotopes, and related adaptive traits in Picea rubens, Picea mariana, and their hybrids

John E. Major; Alex Mosseler; Debby C. Barsi; Moira Campbell

Nutrient- and water economy-related traits in plants have significant implications for growth and fitness. We explored, examined, and compared nutrient concentrations, use efficiencies, assimilation, and informative isotopic elements in a seedling provenance experiment, and in seedling and mature tree controlled-cross hybrid experiments of red spruce (RS) (Picea rubens Sarg.) and black spruce (BS) (P. mariana (Mill.) BSP). Provenance experiment results showed RS had consistently lower carbon (C) and nitrogen (N) concentrations, and N assimilation ratio (NAR), but higher N-use efficiency (NUE), C:N ratio, water-use efficiency (WUE), and needle calcium (Ca) and magnesium (Mg) concentrations than BS. The hybrid seedling experiment showed similar results and additive inheritance for needle N, C:N ratio, NAR, Ca, and Mg, evident by a near-linear progression from one species to the other. Within both species, seedling height showed a negative relationship with needle N and a positive relationship with NUE. However, across hybrid indices, seedling height showed a positive relationship with needle N and a negative relationship with NUE. Also across hybrid indices, seedling height showed a negative relationship to Ca and C:N, and a positive relationship with NAR and 13C discrimination (without hybrid 25). Mature tree hybrid experiment results were similar to those of the seedling experiment, but with a dampening of differences caused by low nutrient availability and possibly age effects. The similarity was not true for 13C discrimination as mature tree height showed a strong negative relationship to 13C discrimination, indicating that BS had greater WUE. The reversal is most probably caused by the large difference in water availability.


Ecoscience | 2017

Accelerating the selection process for Populus and Salix clones using short-term photosynthetic acclimation responses under greenhouse conditions

Takamitsu Mamashita; Guy R. Larocque; Annie DesRochers; Jean Beaulieu; Barb R. Thomas; Alex Mosseler; John E. Major; Derek Sidders

ABSTRACT Leaf photosynthetic characteristics could be determinant factors to identify the most productive clones of hybrid poplars (Populus spp.) and willows (Salix spp.). Photosynthetic acclimation of hybrid poplars and willows was studied under greenhouse conditions. Seven Populus and five Salix clones were grown for 3 months at three spacings [20 × 20, 35 × 35, and 60 × 60 cm] and two nitrogen (N) levels (20 and 200 µg g-1). There were no significant spacing effects on leafless aboveground biomass per tree (AGBT) and height. Clonal acclimation to higher density was associated to increases in leaf area index (LAI) by 347% and specific leaf area (SLA) by 13% despite decreased leaf N content per unit leaf area (Narea) by 31%. There were no changes in net CO2 assimilation rate (A) and photosynthetic N-use efficiency in the ambient light condition (PNUEamb) within different spacings. The N addition alleviated competition effects by maximizing leaf area (LA) and SLA. Compared with less productive clones, more productive clones had 28% greater SLA, greater LA and AGBT per unit of increase in Narea over all treatments. The increased development of LA and SLA under high planting density is a key indicator of more productive clones.


BMC Proceedings | 2011

Gene expression responses of black spruce (Picea mariana) to global climate change conditions

Om P. Rajora; Jinhong Kim; John E. Major; John W. Malcolm

Global climate change conditions (elevated CO2 and atmospheric temperatures) are subjecting our forests, especially Boreal and temperate forests, to significant abiotic stresses, such as drought. This can affect health, productivity and fitness of our forests. Therefore, it is imperative to understand genomic and eco-physiological responses of forest trees to global climate change. We are addressing this aspect in black spruce (Picea mariana) - a transcontinental, ecologically and economically important tree species of the North American Boreal forest. Our objective was to determine gene expression and physiological responses and their inter-relationships in black spruce to elevated CO2, drought and co-stressed conditions. We have used NGS whole transcriptome sequencing, cDNA-AFLP and qPCR analyses to identify, annotate and characterize genes expressed differentially in response to elevated CO2, drought and combined elevated CO2 and drought conditions in black spruce using the cloned material. Photosynthetic rate and stomatal conductance were measured simultaneously with tissue collection for RNA extraction. Thousands of transcripts (genes) showed differential expression (no expression, up-regulation or down-regulation) in response to elevated CO2, drought and/or their combined conditions, with over 1600 genes from several pathways showing >10-folds gene expression differences between control and treated plants. A number of genes showed 100 to 500 folds up or down regulation in response to elevated CO2, drought or their combined conditions. Responses to each treatment at the gene expression and physiological levels were correlated well among different genotypes. We will present these results which contribute significantly to our understanding of tree’s responses to global climate change.


Canadian Journal of Forest Research | 1999

Genetic variation in growth, carbon isotope discrimination, and foliar N concentration in Picea mariana: analyses from a half-diallel mating design using field-grown trees

Kurt H. Johnsen; Lawrence B. Flanagan; Dudley A. Huber; John E. Major


Tree Physiology | 2001

Increasing the sink:source balance enhances photosynthetic rate of 1-year-old balsam fir foliage by increasing allocation of mineral nutrients

Michael B. Lavigne; C. H. A. Little; John E. Major


Canadian Journal of Forest Research | 1996

Family variation in photosynthesis of 22-year-old black spruce: a test of two models of physiological response to water stress

John E. Major; Kurt H. Johnsen

Collaboration


Dive into the John E. Major's collaboration.

Top Co-Authors

Avatar

Alex Mosseler

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debby C. Barsi

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar

Moira Campbell

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar

Om P. Rajora

University of New Brunswick

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annie DesRochers

Université du Québec en Abitibi-Témiscamingue

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge