Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Om P. Rajora is active.

Publication


Featured researches published by Om P. Rajora.


BMC Genetics | 2009

A simple method for estimating genetic diversity in large populations from finite sample sizes.

Stanislav Bashalkhanov; Madhav Pandey; Om P. Rajora

BackgroundSample size is one of the critical factors affecting the accuracy of the estimation of population genetic diversity parameters. Small sample sizes often lead to significant errors in determining the allelic richness, which is one of the most important and commonly used estimators of genetic diversity in populations. Correct estimation of allelic richness in natural populations is challenging since they often do not conform to model assumptions. Here, we introduce a simple and robust approach to estimate the genetic diversity in large natural populations based on the empirical data for finite sample sizes.ResultsWe developed a non-linear regression model to infer genetic diversity estimates in large natural populations from finite sample sizes. The allelic richness values predicted by our model were in good agreement with those observed in the simulated data sets and the true allelic richness observed in the source populations. The model has been validated using simulated population genetic data sets with different evolutionary scenarios implied in the simulated populations, as well as large microsatellite and allozyme experimental data sets for four conifer species with contrasting patterns of inherent genetic diversity and mating systems. Our model was a better predictor for allelic richness in natural populations than the widely-used Ewens sampling formula, coalescent approach, and rarefaction algorithm.ConclusionsOur regression model was capable of accurately estimating allelic richness in natural populations regardless of the species and marker system. This regression modeling approach is free from assumptions and can be widely used for population genetic and conservation applications.


BMC Evolutionary Biology | 2012

Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer - eastern white cedar (Thuja occidentalis L.)

Madhav Pandey; Om P. Rajora

BackgroundFine-scale or spatial genetic structure (SGS) is one of the key genetic characteristics of plant populations. Several evolutionary and ecological processes and population characteristics influence the level of SGS within plant populations. Higher fine-scale genetic structure may be expected in peripheral than core populations of long-lived forest trees, owing to the differences in the magnitude of operating evolutionary and ecological forces such as gene flow, genetic drift, effective population size and founder effects. We addressed this question using eastern white cedar (Thuja occidentalis) as a model species for declining to endangered long-lived tree species with mixed-mating system.ResultsWe determined the SGS in two core and two peripheral populations of eastern white cedar from its Maritime Canadian eastern range using six nuclear microsatellite DNA markers. Significant SGS ranging from 15 m to 75 m distance classes was observed in the four studied populations. An analysis of combined four populations revealed significant positive SGS up to the 45 m distance class. The mean positive significant SGS observed in the peripheral populations was up to six times (up to 90 m) of that observed in the core populations (15 m). Spatial autocorrelation coefficients and correlograms of single and sub-sets of populations were statistically significant. The extent of within-population SGS was significantly negatively correlated with all genetic diversity parameters. Significant heterogeneity of within-population SGS was observed for 0-15 m and 61-90 m between core and peripheral populations. Average Sp, and gene flow distances were higher in peripheral (Sp = 0.023, σg = 135 m) than in core (Sp = 0.014, σg = 109 m) populations. However, the mean neighborhood size was higher in the core (Nb = 82) than in the peripheral (Nb = 48) populations.ConclusionEastern white cedar populations have significant fine-scale genetic structure at short distances. Peripheral populations have several-folds higher within-population fine-scale genetic structure than core populations. Anthropogenic disturbances and population fragmentation presumably have significant effects on fine-scale genetic structure in eastern white cedar. Core populations have higher neighborhood size than peripheral populations, whereas gene flow distances are higher in peripheral than in core populations. The results of our study contribute to the knowledge of poorly-understood spatial genetic structure of core versus peripheral populations in plants. As well, the information is of significance for conservation of genetic resources of eastern white cedar and perhaps of other long-lived forest trees with mixed-mating system.


Evolutionary Applications | 2013

Effects of harvesting of increasing intensities on genetic diversity and population structure of white spruce

Manphool S. Fageria; Om P. Rajora

Forest harvesting of increasing intensities is expected to have intensifying impacts on the genetic diversity and population structure of postharvest naturally regenerated stands by affecting the magnitude of evolutionary processes, such as genetic drift, gene flow, mating system, and selection. We have tested this hypothesis for the first time by employing widely distributed boreal white spruce (Picea glauca) as a model and controlled, replicated experimental harvesting and regeneration experiment at the EMEND project site (http://www.emendproject.org). We used two approaches. First, genetic diversity and population structure of postharvest natural regeneration after five harvesting treatments (green tree retention of 75%, 50%, 20%, and 10%, and clearcut) were assessed and compared with those of the unharvested control (pristine preharvest old‐growth) in two replicates each of conifer‐dominated (CD) and mixed‐wood (MW) forest, using 10 (six EST (expressed sequence tag) and four genomic) microsatellite markers. Second, genetic diversity and population structure of preharvest old‐growth were compared with those of postharvest natural regeneration after five harvesting treatments in the same treatment blocks in one replicate each of CD and MW forests. Contrary to our expectations, genetic diversity, inbreeding levels, and population genetic structure were similar between unharvested control or preharvest old‐growth and postharvest natural regeneration after five harvesting treatments, with clearcut showing no negative genetic impacts. The potential effects of genetic drift and inbreeding resulting from harvesting bottlenecks were counterbalanced by predominantly outcrossing mating system and high gene flow from the residual and/or surrounding white spruce. CD and MW forests responded similarly to harvesting of increasing intensities. Simulated data for 10, 50, and 100 microsatellite markers showed the same results as obtained empirically from 10 microsatellite markers. Similar patterns of genetic diversity and population structure were observed for EST and genomic microsatellites. In conclusion, harvesting of increasing intensities did not show any significant negative impact on genetic diversity, population structure, and evolutionary potential of white spruce in CD and MW forests. Our first of its kind of study addresses the broad central forest management question how forest harvesting and regeneration practices can best maintain genetic biodiversity and ecosystem integrity.


Plant Methods | 2008

Protocol: A high-throughput DNA extraction system suitable for conifers

Stanislav Bashalkhanov; Om P. Rajora

BackgroundHigh throughput DNA isolation from plants is a major bottleneck for most studies requiring large sample sizes. A variety of protocols have been developed for DNA isolation from plants. However, many species, including conifers, have high contents of secondary metabolites that interfere with the extraction process or the subsequent analysis steps. Here, we describe a procedure for high-throughput DNA isolation from conifers.ResultsWe have developed a high-throughput DNA extraction protocol for conifers using an automated liquid handler and modifying the Qiagen MagAttract Plant Kit protocol. The modifications involve change to the buffer system and improving the protocol so that it almost doubles the number of samples processed per kit, which significantly reduces the overall costs. We describe two versions of the protocol: one for medium-throughput (MTP) and another for high-throughput (HTP) DNA isolation. The HTP version works from start to end in the industry-standard 96-well format, while the MTP version provides higher DNA yields per sample processed. We have successfully used the protocol for DNA extraction and genotyping of thousands of individuals of several spruce and a pine species.ConclusionA high-throughput system for DNA extraction from conifer needles and seeds has been developed and validated. The quality of the isolated DNA was comparable with that obtained from two commonly used methods: the silica-spin column and the classic CTAB protocol. Our protocol provides a fully automatable and cost effective solution for processing large numbers of conifer samples.


American Journal of Botany | 2012

Genetic diversity and differentiation of core vs. peripheral populations of eastern white cedar, Thuja occidentalis (Cupressaceae)

Madhav Pandey; Om P. Rajora

PREMISE OF THE STUDY Geographically peripheral (marginal) populations are expected to have lower genetic diversity and higher genetic differentiation than geographically core (central) populations as a result of supposedly lower effective population size (N(e)) and higher genetic drift, founder effect, fragmentation, and isolation in peripheral than in core populations. Here we address this issue for a long-lived plant species, eastern white cedar (Thuja occidentalis). METHODS Genetic diversity and population structure of 13 natural populations of eastern white cedar from its Canadian eastern peripheral and core natural ranges in New Brunswick, Nova Scotia, and Prince Edward Island were studied using six nuclear microsatellite DNA markers. KEY RESULTS The core populations of eastern white cedar had significantly higher allelic diversity (mean A = 8.83, A(r) = 8.13, A(e) = 4.03) and N(e) (428) than the peripheral populations (A = 6.64, A(r) = 6.15, A(e) = 3.12, N(e) = 198). However, expected heterozygosity was similar in the core (H(e) = 0.64) and peripheral (H(e) = 0.60) populations. Genetic differentiation was significantly higher among the peripheral (F(ST) = 0.089) than among the core (F(ST) = 0.032) populations. No genetic differentiation (F(ST)/Φ(RT) = 0.000) was detected between core and peripheral regions. CONCLUSIONS Peripheral populations have significantly lower N(e) and genetic diversity in terms of allelic diversity (richness) and significantly higher genetic differentiation than the core populations of eastern white cedar in its Canadian eastern range. However, core and peripheral populations have similar levels of expected heterozygosity. Implications for conservation of eastern white cedar genetic resources are discussed.


PLOS ONE | 2016

Single-Locus versus Multilocus Patterns of Local Adaptation to Climate in Eastern White Pine (Pinus strobus, Pinaceae)

Om P. Rajora; Andrew J. Eckert; John W. R. Zinck

Natural plant populations are often adapted to their local climate and environmental conditions, and populations of forest trees offer some of the best examples of this pattern. However, little empirical work has focused on the relative contribution of single-locus versus multilocus effects to the genetic architecture of local adaptation in plants/forest trees. Here, we employ eastern white pine (Pinus strobus) to test the hypothesis that it is the inter-genic effects that primarily drive climate-induced local adaptation. The genetic structure of 29 range-wide natural populations of eastern white pine was determined in relation to local climatic factors using both a reference set of SSR markers, and SNPs located in candidate genes putatively involved in adaptive response to climate. Comparisons were made between marker sets using standard single-locus outlier analysis, single-locus and multilocus environment association analyses and a novel implementation of Population Graphs. Magnitudes of population structure were similar between the two marker sets. Outlier loci consistent with diversifying selection were rare for both SNPs and SSRs. However, genetic distances based on the multilocus among population covariances (cGD) were significantly more correlated to climate, even after correcting for spatial effects, for SNPs as compared to SSRs. Coalescent simulations confirmed that the differences in mutation rates between SSRs and SNPs did not affect the topologies of the Population Graphs, and hence values of cGD and their correlations with associated climate variables. We conclude that the multilocus covariances among populations primarily reflect adaptation to local climate and environment in eastern white pine. This result highlights the complexity of the genetic architecture of adaptive traits, as well as the need to consider multilocus effects in studies of local adaptation.


BMC Evolutionary Biology | 2016

Post-glacial phylogeography and evolution of a wide-ranging highly-exploited keystone forest tree, eastern white pine (Pinus strobus) in North America: single refugium, multiple routes

John W. R. Zinck; Om P. Rajora

BackgroundKnowledge of the historical distribution and postglacial phylogeography and evolution of a species is important to better understand its current distribution and population structure and potential fate in the future, especially under climate change conditions, and conservation of its genetic resources. We have addressed this issue in a wide-ranging and heavily exploited keystone forest tree species of eastern North America, eastern white pine (Pinus strobus). We examined the range-wide population genetic structure, tested various hypothetical population history and evolutionary scenarios and inferred the location of glacial refugium and post-glacial recolonization routes. Our hypothesis was that eastern white pine survived in a single glacial refugium and expanded through multiple post-glacial recolonization routes.ResultsWe studied the range-wide genetic diversity and population structure of 33 eastern white pine populations using 12 nuclear and 3 chloroplast microsatellite DNA markers. We used Approximate Bayesian Computation approach to test various evolutionary scenarios. We observed high levels of genetic diversity, and significant genetic differentiation (FST = 0.104) and population structure among eastern white pine populations across its range. A south to north trend of declining genetic diversity existed, consistent with repeated founder effects during post-glaciation migration northwards. We observed broad consensus from nuclear and chloroplast genetic markers supporting the presence of two main post-glacial recolonization routes that originated from a single southern refugium in the mid-Atlantic plain. One route gave rise to populations at the western margin of the species’ range in Minnesota and western Ontario. The second route gave rise to central-eastern populations, which branched into two subgroups: central and eastern. We observed minimal sharing of chloroplast haplotypes between recolonization routes but there was evidence of admixture between the western and west-central populations.ConclusionsOur study reveals a single southern refugium, two recolonization routes and three genetically distinguishable lineages in eastern white pine that we suggest to be treated as separate Evolutionarily Significant Units. Like many wide-ranging North American species, eastern white pine retains the genetic signatures of post-glacial recolonization and evolution, and its contemporary population genetic structure reflects not just the modern distribution and effects of heavy exploitation but also routes northward from its glacial refugium.


Molecular Ecology | 2013

Genetic signatures of natural selection in response to air pollution in red spruce (Picea rubens, Pinaceae)

Stanislav Bashalkhanov; Andrew J. Eckert; Om P. Rajora

One of the most important drivers of local adaptation for forest trees is climate. Coupled to these patterns, however, are human‐induced disturbances through habitat modification and pollution. The confounded effects of climate and disturbance have rarely been investigated with regard to selective pressure on forest trees. Here, we have developed and used a population genetic approach to search for signals of selection within a set of 36 candidate genes chosen for their putative effects on adaptation to climate and human‐induced air pollution within five populations of red spruce (Picea rubens Sarg.), distributed across its natural range and air pollution gradient in eastern North America. Specifically, we used FST outlier and environmental correlation analyses to highlight a set of seven single nucleotide polymorphisms (SNPs) that were overly correlated with climate and levels of sulphate pollution after correcting for the confounding effects of population history. Use of three age cohorts within each population allowed the effects of climate and pollution to be separated temporally, as climate‐related SNPs (n = 7) showed the strongest signals in the oldest cohort, while pollution‐related SNPs (n = 3) showed the strongest signals in the youngest cohorts. These results highlight the usefulness of population genetic scans for the identification of putatively nonneutral evolution within genomes of nonmodel forest tree species, but also highlight the need for the development and application of robust methodologies to deal with the inherent multivariate nature of the genetic and ecological data used in these types of analyses.


Genome | 2011

A high-density genetic linkage map of a black spruce (Picea mariana) red spruce (Picea rubens) interspecific hybrid

Bum-YongKangB.-Y. Kang; John E. Major; Om P. Rajora

Genetic maps provide an important genomic resource of basic and applied significance. Spruce (Picea) has a very large genome size (between 0.85 × 1010 and 2.4 × 1010 bp; 8.5-24.0 pg/1C, a mean of 17.7 pg/1C ). We have constructed a near-saturated genetic linkage map for an interspecific backcross (BC1) hybrid of black spruce (BS; Picea mariana (Mill.) B.S.P.) and red spruce (RS; Picea rubens Sarg.), using selectively amplified microsatellite polymorphic loci (SAMPL) markers. A total of 2284 SAMPL markers were resolved using 31 SAMPL-MseI selective nucleotide primer combinations. Of these, 1216 SAMPL markers showing Mendelian segregation were mapped, whereas 1068 (46.8%) SAMPL fragments showed segregation distortion at α = 0.05. Maternal, paternal, and consensus maps consistently coalesced into 12 linkage groups, corresponding to the haploid chromosome number (1n = 1x = 12) of 12 in the genus Picea. The maternal BS map consisted of 814 markers distributed over 12 linkage groups, covering 1670 cM, with a mean map distance of 2.1 cM between adjacent markers. The paternal BS × RS map consisted of 773 markers distributed over 12 linkage groups, covering 1563 cM, with a mean map distance of 2.0 cM between adjacent markers. The consensus interspecific hybrid BC1 map consisted of 1216 markers distributed over 12 linkage groups, covering 1865 cM (98% genome coverage), with a mean map distance of 1.5 cM between adjacent markers. The genetic map reported here provides an important genomic resource in Picea, Pinaceae, and conifers.


Tree Genetics & Genomes | 2014

Effects of silvicultural practices on genetic diversity and population structure of white spruce in Saskatchewan

Manphool S. Fageria; Om P. Rajora

Forest harvesting and renewal practices using clearcut harvesting followed by artificial and natural regeneration (NR) may impact genetic diversity in subsequent forest tree populations. Plantations (PL) and phenotypic selections may exhibit lower genetic diversity than natural old growth (OG) and naturally-regenerated young populations because they may have a narrow genetic base. We used ten (six EST and four genomic) microsatellite loci, to reassess genetic impacts of silvicultural practices in white spruce (Picea glauca), previously assessed by using 51 RAPD markers by Rajora (1999). Allelic diversity at the genomic microsatellite loci was about three times higher than at the EST-derived microsatellite loci. Although the trends for microsatellite genetic diversity among different stands types were similar to that observed for RAPD markers, with natural OG stands showing the highest and tree improvement selections the lowest allelic and genotypic genetic diversity, no significant differences were observed for microsatellite genetic diversity among OG, young NR, PL and open-pollinated progeny of first-generation phenotypic selections (SEL). The inbreeding levels and genetic differentiation among populations within OG, NR and PL were also similar. However, phenotypic selections had somewhat different genetic constitution as they showed the highest genetic distances with OG, NR and SEL. On the other hand, the lowest genetic distances were observed between the OG and NR stands, which also had similar levels of genetic diversity. Our study suggests no significant negative impacts of harvesting and alternative reforestation practices on microsatellite genetic diversity in white spruce and calls for using more than one marker type in assessing the genetic impacts of silvicultural practices in forest trees.

Collaboration


Dive into the Om P. Rajora's collaboration.

Top Co-Authors

Avatar

Alex Mosseler

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar

John E. Major

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debby C. Barsi

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moira Campbell

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar

John W. R. Zinck

University of New Brunswick

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Eckert

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge