Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John E. McCormack is active.

Publication


Featured researches published by John E. McCormack.


Science | 2014

Whole-genome analyses resolve early branches in the tree of life of modern birds

Paula F. Campos; Amhed Missael; Vargas Velazquez; José Alfredo Samaniego; Claudio V. Mello; Peter V. Lovell; Michael Bunce; Robb T. Brumfield; Frederick H. Sheldon; Erich D. Jarvis; Siavash Mirarab; Andre J. Aberer; Bo Li; Peter Houde; Cai Li; Simon Y. W. Ho; Brant C. Faircloth; Jason T. Howard; Alexander Suh; Claudia C Weber; Rute R. da Fonseca; Jianwen Li; Fang Zhang; Hui Li; Long Zhou; Nitish Narula; Liang Liu; Bastien Boussau; Volodymyr Zavidovych; Sankar Subramanian

To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.


Systematic Biology | 2012

Ultraconserved Elements Anchor Thousands of Genetic Markers Spanning Multiple Evolutionary Timescales

Brant C. Faircloth; John E. McCormack; Nicholas G. Crawford; Michael G. Harvey; Robb T. Brumfield; Travis C. Glenn

Although massively parallel sequencing has facilitated large-scale DNA sequencing, comparisons among distantly related species rely upon small portions of the genome that are easily aligned. Methods are needed to efficiently obtain comparable DNA fragments prior to massively parallel sequencing, particularly for biologists working with non-model organisms. We introduce a new class of molecular marker, anchored by ultraconserved genomic elements (UCEs), that universally enable target enrichment and sequencing of thousands of orthologous loci across species separated by hundreds of millions of years of evolution. Our analyses here focus on use of UCE markers in Amniota because UCEs and phylogenetic relationships are well-known in some amniotes. We perform an in silico experiment to demonstrate that sequence flanking 2030 UCEs contains information sufficient to enable unambiguous recovery of the established primate phylogeny. We extend this experiment by performing an in vitro enrichment of 2386 UCE-anchored loci from nine, non-model avian species. We then use alignments of 854 of these loci to unambiguously recover the established evolutionary relationships within and among three ancient bird lineages. Because many organismal lineages have UCEs, this type of genetic marker and the analytical framework we outline can be applied across the tree of life, potentially reshaping our understanding of phylogeny at many taxonomic levels.


Molecular Phylogenetics and Evolution | 2013

Applications of next-generation sequencing to phylogeography and phylogenetics

John E. McCormack; Sarah M. Hird; Amanda J. Zellmer; Bryan C. Carstens; Robb T. Brumfield

This is a time of unprecedented transition in DNA sequencing technologies. Next-generation sequencing (NGS) clearly holds promise for fast and cost-effective generation of multilocus sequence data for phylogeography and phylogenetics. However, the focus on non-model organisms, in addition to uncertainty about which sample preparation methods and analyses are appropriate for different research questions and evolutionary timescales, have contributed to a lag in the application of NGS to these fields. Here, we outline some of the major obstacles specific to the application of NGS to phylogeography and phylogenetics, including the focus on non-model organisms, the necessity of obtaining orthologous loci in a cost-effective manner, and the predominate use of gene trees in these fields. We describe the most promising methods of sample preparation that address these challenges. Methods that reduce the genome by restriction digest and manual size selection are most appropriate for studies at the intraspecific level, whereas methods that target specific genomic regions (i.e., target enrichment or sequence capture) have wider applicability from the population level to deep-level phylogenomics. Additionally, we give an overview of how to analyze NGS data to arrive at data sets applicable to the standard toolkit of phylogeography and phylogenetics, including initial data processing to alignment and genotype calling (both SNPs and loci involving many SNPs). Even though whole-genome sequencing is likely to become affordable rather soon, because phylogeography and phylogenetics rely on analysis of hundreds of individuals in many cases, methods that reduce the genome to a subset of loci should remain more cost-effective for some time to come.


Evolution | 2009

Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation? Insights from tests with niche models.

John E. McCormack; Amanda J. Zellmer; L. Lacey Knowles

The role of ecology in the origin of species has been the subject of long‐standing interest to evolutionary biologists. New sources of spatially explicit ecological data allow for large‐scale tests of whether speciation is associated with niche divergence or whether closely related species tend to be similar ecologically (niche conservatism). Because of the confounding effects of spatial autocorrelation of environmental variables, we generate null expectations for niche divergence for both an ecological‐niche modeling and a multivariate approach to address the question: do allopatrically distributed taxa occupy similar niches? In a classic system for the study of niche evolution—the Aphelocoma jays—we show that there is little evidence for niche divergence among Mexican Jay (A. ultramarina) lineages in the process of speciation, contrary to previous results. In contrast, Aphelocoma species that exist in partial sympatry in some regions show evidence for niche divergence. Our approach is widely applicable to the many cases of allopatric lineages in the beginning stages of speciation. These results do not support an ecological speciation model for Mexican Jay lineages because, in most cases, the allopatric environments they occupy are not significantly more divergent than expected under a null model.


Biology Letters | 2012

More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs

Nicholas G. Crawford; Brant C. Faircloth; John E. McCormack; Robb T. Brumfield; Kevin Winker; Travis C. Glenn

We present the first genomic-scale analysis addressing the phylogenetic position of turtles, using over 1000 loci from representatives of all major reptile lineages including tuatara. Previously, studies of morphological traits positioned turtles either at the base of the reptile tree or with lizards, snakes and tuatara (lepidosaurs), whereas molecular analyses typically allied turtles with crocodiles and birds (archosaurs). A recent analysis of shared microRNA families found that turtles are more closely related to lepidosaurs. To test this hypothesis with data from many single-copy nuclear loci dispersed throughout the genome, we used sequence capture, high-throughput sequencing and published genomes to obtain sequences from 1145 ultraconserved elements (UCEs) and their variable flanking DNA. The resulting phylogeny provides overwhelming support for the hypothesis that turtles evolved from a common ancestor of birds and crocodilians, rejecting the hypothesized relationship between turtles and lepidosaurs.


Evolution | 2011

Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays

John E. McCormack; Kathleen S. Delaney; A. Townsend Peterson; L. Lacey Knowles

Estimates of the timing of divergence are central to testing the underlying causes of speciation. Relaxed molecular clocks and fossil calibration have improved these estimates; however, these advances are implemented in the context of gene trees, which can overestimate divergence times. Here we couple recent innovations for dating speciation events with the analytical power of species trees, where multilocus data are considered in a coalescent context. Divergence times are estimated in the bird genus Aphelocoma to test whether speciation in these jays coincided with mountain uplift or glacial cycles. Gene trees and species trees show general agreement that diversification began in the Miocene amid mountain uplift. However, dates from the multilocus species tree are more recent, occurring predominately in the Pleistocene, consistent with theory that divergence times can be significantly overestimated with gene‐tree based approaches that do not correct for genetic divergence that predates speciation. In addition to coalescent stochasticity, Haldanes rule could account for some differences in timing estimates between mitochondrial DNA and nuclear genes. By incorporating a fossil calibration applied to the species tree, in addition to the process of gene lineage coalescence, the present approach provides a more biologically realistic framework for dating speciation events, and hence for testing the links between diversification and specific biogeographic and geologic events.


PLOS ONE | 2013

A Phylogeny of Birds Based on Over 1,500 Loci Collected by Target Enrichment and High-Throughput Sequencing

John E. McCormack; Michael G. Harvey; Brant C. Faircloth; Nicholas G. Crawford; Travis C. Glenn; Robb T. Brumfield

Evolutionary relationships among birds in Neoaves, the clade comprising the vast majority of avian diversity, have vexed systematists due to the ancient, rapid radiation of numerous lineages. We applied a new phylogenomic approach to resolve relationships in Neoaves using target enrichment (sequence capture) and high-throughput sequencing of ultraconserved elements (UCEs) in avian genomes. We collected sequence data from UCE loci for 32 members of Neoaves and one outgroup (chicken) and analyzed data sets that differed in their amount of missing data. An alignment of 1,541 loci that allowed missing data was 87% complete and resulted in a highly resolved phylogeny with broad agreement between the Bayesian and maximum-likelihood (ML) trees. Although results from the 100% complete matrix of 416 UCE loci were similar, the Bayesian and ML trees differed to a greater extent in this analysis, suggesting that increasing from 416 to 1,541 loci led to increased stability and resolution of the tree. Novel results of our study include surprisingly close relationships between phenotypically divergent bird families, such as tropicbirds (Phaethontidae) and the sunbittern (Eurypygidae) as well as between bustards (Otididae) and turacos (Musophagidae). This phylogeny bolsters support for monophyletic waterbird and landbird clades and also strongly supports controversial results from previous studies, including the sister relationship between passerines and parrots and the non-monophyly of raptorial birds in the hawk and falcon families. Although significant challenges remain to fully resolving some of the deep relationships in Neoaves, especially among lineages outside the waterbirds and landbirds, this study suggests that increased data will yield an increasingly resolved avian phylogeny.


Nature | 2014

The drivers of tropical speciation

Brian Tilston Smith; John E. McCormack; Andrés M. Cuervo; Michael J. Hickerson; Alexandre Aleixo; Carlos Daniel Cadena; Jorge Pérez-Emán; Curtis W. Burney; Xiaoou Xie; Michael G. Harvey; Brant C. Faircloth; Travis C. Glenn; Elizabeth P. Derryberry; Jesse Prejean; Samantha Fields; Robb T. Brumfield

Since the recognition that allopatric speciation can be induced by large-scale reconfigurations of the landscape that isolate formerly continuous populations, such as the separation of continents by plate tectonics, the uplift of mountains or the formation of large rivers, landscape change has been viewed as a primary driver of biological diversification. This process is referred to in biogeography as vicariance. In the most species-rich region of the world, the Neotropics, the sundering of populations associated with the Andean uplift is ascribed this principal role in speciation. An alternative model posits that rather than being directly linked to landscape change, allopatric speciation is initiated to a greater extent by dispersal events, with the principal drivers of speciation being organism-specific abilities to persist and disperse in the landscape. Landscape change is not a necessity for speciation in this model. Here we show that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change. Instead, the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix. These results, augmented by the observation that most species-level diversity originated after episodes of major Andean uplift in the Neogene period, suggest that dispersal and differentiation on a matrix previously shaped by large-scale landscape events was a major driver of avian speciation in lowland Neotropical rainforests.


Science | 2014

Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs

Richard E. Green; Edward L. Braun; Joel Armstrong; Dent Earl; Ngan Nguyen; Glenn Hickey; Michael W. Vandewege; John St. John; Salvador Capella-Gutiérrez; Todd A. Castoe; Colin Kern; Matthew K. Fujita; Juan C. Opazo; Jerzy Jurka; Kenji K. Kojima; Juan Caballero; Robert Hubley; Arian Smit; Roy N. Platt; Christine Lavoie; Meganathan P. Ramakodi; John W. Finger; Alexander Suh; Sally R. Isberg; Lee G. Miles; Amanda Y. Chong; Weerachai Jaratlerdsiri; Jaime Gongora; C. Moran; Andrés Iriarte

INTRODUCTION Crocodilians and birds are the two extant clades of archosaurs, a group that includes the extinct dinosaurs and pterosaurs. Fossils suggest that living crocodilians (alligators, crocodiles, and gharials) have a most recent common ancestor 80 to 100 million years ago. Extant crocodilians are notable for their distinct morphology, limited intraspecific variation, and slow karyotype evolution. Despite their unique biology and phylogenetic position, little is known about genome evolution within crocodilians. Evolutionary rates of tetrapods inferred from DNA sequences anchored by ultraconserved elements. Evolutionary rates among reptiles vary, with especially low rates among extant crocodilians but high rates among squamates. We have reconstructed the genomes of the common ancestor of birds and of all archosaurs (shown in gray silhouette, although the morphology of these species is uncertain). RATIONALE Genome sequences for the American alligator, saltwater crocodile, and Indian gharial—representatives of all three extant crocodilian families—were obtained to facilitate better understanding of the unique biology of this group and provide a context for studying avian genome evolution. Sequence data from these three crocodilians and birds also allow reconstruction of the ancestral archosaurian genome. RESULTS We sequenced shotgun genomic libraries from each species and used a variety of assembly strategies to obtain draft genomes for these three crocodilians. The assembled scaffold N50 was highest for the alligator (508 kilobases). Using a panel of reptile genome sequences, we generated phylogenies that confirm the sister relationship between crocodiles and gharials, the relationship with birds as members of extant Archosauria, and the outgroup status of turtles relative to birds and crocodilians. We also estimated evolutionary rates along branches of the tetrapod phylogeny using two approaches: ultraconserved element–anchored sequences and fourfold degenerate sites within stringently filtered orthologous gene alignments. Both analyses indicate that the rates of base substitution along the crocodilian and turtle lineages are extremely low. Supporting observations were made for transposable element content and for gene family evolution. Analysis of whole-genome alignments across a panel of reptiles and mammals showed that the rate of accumulation of micro-insertions and microdeletions is proportionally lower in crocodilians, consistent with a single underlying cause of a reduced rate of evolutionary change rather than intrinsic differences in base repair machinery. We hypothesize that this single cause may be a consistently longer generation time over the evolutionary history of Crocodylia. Low heterozygosity was observed in each genome, consistent with previous analyses, including the Chinese alligator. Pairwise sequential Markov chain analysis of regional heterozygosity indicates that during glacial cycles of the Pleistocene, each species suffered reductions in effective population size. The reduction was especially strong for the American alligator, whose current range extends farthest into regions of temperate climates. CONCLUSION We used crocodilian, avian, and outgroup genomes to reconstruct 584 megabases of the archosaurian common ancestor genome and the genomes of key ancestral nodes. The estimated accuracy of the archosaurian genome reconstruction is 91% and is higher for conserved regions such as genes. The reconstructed genome can be improved by adding more crocodilian and avian genome assemblies and may provide a unique window to the genomes of extinct organisms such as dinosaurs and pterosaurs. To provide context for the diversification of archosaurs—the group that includes crocodilians, dinosaurs, and birds—we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.


Proceedings of the Royal Society of London B: Biological Sciences | 2007

Recent postglacial range expansion drives the rapid diversification of a songbird lineage in the genus Junco

Borja Milá; John E. McCormack; Gabriela Castañeda; Robert K. Wayne; Thomas B. Smith

Pleistocene glacial cycles are thought to have played a major role in the diversification of temperate and boreal species of North American birds. Given that coalescence times between sister taxa typically range from 0.1 to 2.0 Myr, it has been assumed that diversification occurred as populations were isolated in refugia over long periods of time, probably spanning one to several full glacial cycles. In contrast, the rapid postglacial range expansions and recolonization of northern latitudes following glacial maxima have received less attention as potential promoters of speciation. Here we report a case of extremely rapid diversification in the songbird genus Junco as a result of a single continent-wide range expansion within the last 10 000 years. Molecular data from 264 juncos sampled throughout their range reveal that as the yellow-eyed junco (Junco phaeonotus) of Mesoamerica expanded northward following the last glacial maximum, it speciated into the dark-eyed junco (Junco hyemalis), which subsequently diversified itself into at least five markedly distinct and geographically structured morphotypes in the USA and Canada. Patterns of low genetic structure and diversity in mitochondrial DNA and amplified fragment length polymorphism loci found in dark-eyed juncos relative to Mesoamerican yellow-eyed juncos provide support for the hypothesis of an expansion from the south, followed by rapid diversification in the north. These results underscore the role of postglacial expansions in promoting diversification and speciation through a mechanism that represents an alternative to traditional modes of Pleistocene speciation.

Collaboration


Dive into the John E. McCormack's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robb T. Brumfield

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Robert W. Bryson

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James M. Maley

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Travis C. Glenn

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luiz F. Ribeiro

Pontifícia Universidade Católica do Paraná

View shared research outputs
Researchain Logo
Decentralizing Knowledge