Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John E. McDonough is active.

Publication


Featured researches published by John E. McDonough.


The New England Journal of Medicine | 2011

Small-Airway Obstruction and Emphysema in Chronic Obstructive Pulmonary Disease

John E. McDonough; Ren Yuan; Masaru Suzuki; Nazgol Seyednejad; W. Mark Elliott; Pablo G. Sanchez; Alexander C. Wright; Warren B. Gefter; Leslie A. Litzky; Harvey O. Coxson; Peter D. Paré; Don D. Sin; Richard A. Pierce; Jason C. Woods; Annette McWilliams; John R. Mayo; Stephen Lam; Joel D. Cooper; James C. Hogg

BACKGROUND The major sites of obstruction in chronic obstructive pulmonary disease (COPD) are small airways (<2 mm in diameter). We wanted to determine whether there was a relationship between small-airway obstruction and emphysematous destruction in COPD. METHODS We used multidetector computed tomography (CT) to compare the number of airways measuring 2.0 to 2.5 mm in 78 patients who had various stages of COPD, as judged by scoring on the Global Initiative for Chronic Obstructive Lung Disease (GOLD) scale, in isolated lungs removed from patients with COPD who underwent lung transplantation, and in donor (control) lungs. MicroCT was used to measure the extent of emphysema (mean linear intercept), the number of terminal bronchioles per milliliter of lung volume, and the minimum diameters and cross-sectional areas of terminal bronchioles. RESULTS On multidetector CT, in samples from patients with COPD, as compared with control samples, the number of airways measuring 2.0 to 2.5 mm in diameter was reduced in patients with GOLD stage 1 disease (P=0.001), GOLD stage 2 disease (P=0.02), and GOLD stage 3 or 4 disease (P<0.001). MicroCT of isolated samples of lungs removed from patients with GOLD stage 4 disease showed a reduction of 81 to 99.7% in the total cross-sectional area of terminal bronchioles and a reduction of 72 to 89% in the number of terminal bronchioles (P<0.001). A comparison of the number of terminal bronchioles and dimensions at different levels of emphysematous destruction (i.e., an increasing value for the mean linear intercept) showed that the narrowing and loss of terminal bronchioles preceded emphysematous destruction in COPD (P<0.001). CONCLUSIONS These results show that narrowing and disappearance of small conducting airways before the onset of emphysematous destruction can explain the increased peripheral airway resistance reported in COPD. (Funded by the National Heart, Lung, and Blood Institute and others.).


Genome Medicine | 2012

A gene expression signature of emphysema-related lung destruction and its reversal by the tripeptide GHK

Joshua D. Campbell; John E. McDonough; Julie E. Zeskind; Tillie L. Hackett; Dmitri V. Pechkovsky; Corry-Anke Brandsma; Masaru Suzuki; John V. Gosselink; Gang Liu; Yuriy O. Alekseyev; Ji Xiao; Xiaohui Zhang; Shizu Hayashi; Joel D. Cooper; Wim Timens; Dirkje S. Postma; Darryl A. Knight; Marc E. Lenburg; James C. Hogg; Avrum Spira

BackgroundChronic obstructive pulmonary disease (COPD) is a heterogeneous disease consisting of emphysema, small airway obstruction, and/or chronic bronchitis that results in significant loss of lung function over time.MethodsIn order to gain insights into the molecular pathways underlying progression of emphysema and explore computational strategies for identifying COPD therapeutics, we profiled gene expression in lung tissue samples obtained from regions within the same lung with varying amounts of emphysematous destruction from smokers with COPD (8 regions × 8 lungs = 64 samples). Regional emphysema severity was quantified in each tissue sample using the mean linear intercept (Lm) between alveolar walls from micro-CT scans.ResultsWe identified 127 genes whose expression levels were significantly associated with regional emphysema severity while controlling for gene expression differences between individuals. Genes increasing in expression with increasing emphysematous destruction included those involved in inflammation, such as the B-cell receptor signaling pathway, while genes decreasing in expression were enriched in tissue repair processes, including the transforming growth factor beta (TGFβ) pathway, actin organization, and integrin signaling. We found concordant differential expression of these emphysema severity-associated genes in four cross-sectional studies of COPD. Using the Connectivity Map, we identified GHK as a compound that can reverse the gene-expression signature associated with emphysematous destruction and induce expression patterns consistent with TGFβ pathway activation. Treatment of human fibroblasts with GHK recapitulated TGFβ-induced gene-expression patterns, led to the organization of the actin cytoskeleton, and elevated the expression of integrin β1. Furthermore, addition of GHK or TGFβ restored collagen I contraction and remodeling by fibroblasts derived from COPD lungs compared to fibroblasts from former smokers without COPD.ConclusionsThese results demonstrate that gene-expression changes associated with regional emphysema severity within an individuals lung can provide insights into emphysema pathogenesis and identify novel therapeutic opportunities for this deadly disease. They also suggest the need for additional studies to examine the mechanisms by which TGFβ and GHK each reverse the gene-expression signature of emphysematous destruction and the effects of this reversal on disease progression.


American Journal of Respiratory and Critical Care Medicine | 2015

Host Response to the Lung Microbiome in Chronic Obstructive Pulmonary Disease

Marc A. Sze; Pedro A. Dimitriu; Masaru Suzuki; John E. McDonough; Josh D. Campbell; John R. Erb-Downward; Gary B. Huffnagle; Shizu Hayashi; W. Mark Elliott; Joel D. Cooper; Don D. Sin; Marc E. Lenburg; Avrum Spira; William W. Mohn; James C. Hogg

RATIONALE The relatively sparse but diverse microbiome in human lungs may become less diverse in chronic obstructive pulmonary disease (COPD). This article examines the relationship of this microbiome to emphysematous tissue destruction, number of terminal bronchioles, infiltrating inflammatory cells, and host gene expression. METHODS Culture-independent pyrosequencing microbiome analysis was used to examine the V3-V5 regions of bacterial 16S ribosomal DNA in 40 samples of lung from 5 patients with COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 4) and 28 samples from 4 donors (controls). A second protocol based on the V1-V3 regions was used to verify the bacterial microbiome results. Within lung tissue samples the microbiome was compared with results of micro-computed tomography, infiltrating inflammatory cells measured by quantitative histology, and host gene expression. MEASUREMENTS AND MAIN RESULTS Ten operational taxonomic units (OTUs) was found sufficient to discriminate between control and GOLD stage 4 lung tissue, which included known pathogens such as Haemophilus influenzae. We also observed a decline in microbial diversity that was associated with emphysematous destruction, remodeling of the bronchiolar and alveolar tissue, and the infiltration of the tissue by CD4(+) T cells. Specific OTUs were also associated with neutrophils, eosinophils, and B-cell infiltration (P < 0.05). The expression profiles of 859 genes and 235 genes were associated with either enrichment or reductions of Firmicutes and Proteobacteria, respectively, at a false discovery rate cutoff of less than 0.1. CONCLUSIONS These results support the hypothesis that there is a host immune response to microorganisms within the lung microbiome that appears to contribute to the pathogenesis of COPD.


Chest | 2013

Small airway obstruction in COPD: new insights based on micro-CT imaging and MRI imaging.

James C. Hogg; John E. McDonough; Masaru Suzuki

The increase in total cross-sectional area in the distal airways of the human lung enhances the mixing of each tidal breath with end-expiratory gas volume by slowing bulk flow and increasing gas diffusion. However, this transition also favors the deposition of airborne particulates in this region because they diffuse 600 times slower than gases. Furthermore, the persistent deposition of toxic airborne particulates stimulates a chronic inflammatory immune cell infiltration and tissue repair and remodeling process that increases the resistance in airways <2 mm in diameter four to 40-fold in COPD. This increase was originally attributed to lumen narrowing because it increases resistance in proportion to the change in lumen radius raised to the fourth power. In contrast, removal of one-half the number of tubes arranged in parallel is required to double their resistance, and approximately 90% need to be removed to explain the increase in resistance measured in COPD. However, recent reexamination of this problem based on micro-CT imaging indicates that terminal bronchioles are both narrowed and reduced to 10% of the control values in the centrilobular and 25% in the panlobular emphysematous phenotype of very severe (GOLD [Global Initiative for Chronic Obstructive Lung Disease] grade IV) COPD. These new data indicate that both narrowing and reduction in numbers of terminal bronchioles contribute to the rapid decline in FEV₁ that leads to severe airway obstruction in COPD. Moreover, the observation that terminal bronchiolar loss precedes the onset of emphysematous destruction suggests this destruction begins in the very early stages of COPD.


Proceedings of the American Thoracic Society | 2009

What Drives the Peripheral Lung–Remodeling Process in Chronic Obstructive Pulmonary Disease?

James C. Hogg; John E. McDonough; John V. Gosselink; Shizu Hayashi

The smaller airways (<2 mm in diameter) offer little resistance in normal lungs but become the major site of obstruction in chronic obstructive pulmonary disease (COPD). We examined bronchiolar remodeling in COPD by combining quantitative histology, micro-computed tomography (CT), and gene expression studies. Volumes of bronchiolar tissue, total collagen, collagen-1, and collagen-3 were measured in lung tissue from 52 patients with different levels of COPD severity. Micro-CT was used to measure the number and lumen area of terminal bronchioles in four lungs removed before lung transplantation and in four donor lungs that served as controls. Laser capture microdissection provided 136 paired samples of bronchiolar and surrounding lung tissue from 63 patients and the gene expression of a cluster of tissue repair genes was compared. This study shows that total bronchiolar tissue decreased with progression of COPD and was associated with a reduction in total collagen and relative increase in collagen-3 over collagen-1. The micro-CT studies showed a 10-fold reduction in terminal bronchiolar number and a 100-fold reduction in lumen area. Interestingly, most genes associated with tissue accumulation during repair decreased their expression in both airways and in the surrounding lung as FEV(1) declined, but eight genes previously associated with COPD increased expression in the surrounding lung tissue. Our study shows that small airway remodeling is associated with narrowing and obliteration of the terminal bronchioles that begins before emphysematous destruction in COPD and in relation to differential expression of tissue repair genes in the airways and surrounding lung.


Circulation Research | 2009

Bosentan Enhances Viral Load via Endothelin-1 Receptor Type-A–Mediated p38 Mitogen-Activated Protein Kinase Activation While Improving Cardiac Function During Coxsackievirus-Induced Myocarditis

David Marchant; Ying Dou; Honglin Luo; Farshid S. Garmaroudi; John E. McDonough; Xiaoning Si; Elizabeth K.-Y. Walker; Zongshu Luo; Anders Arner; Richard G. Hegele; Ismail Laher; Bruce M. McManus

Reduced cardiac output is one of the consequences of myocarditis. Bosentan, an endothelin-1 receptor (ET1R) antagonist, could be useful to reduce cardiac afterload, preserving cardiac output. In this study, we investigated the potential therapeutic use of bosentan in an animal model of viral myocarditis. Using a mouse model of coxsackievirus B3 (CVB3)-induced myocarditis, we demonstrated preserved ejection fraction (EF) and fractional shortening (FS) by treatment with bosentan (68±5.8% EF and 40±3.7% FS for treated versus 48±2.2% EF and 25±2.6% FS for controls; P=0.028). However, bosentan enhanced cardiac viral load (10.4±6.7% in the bosentan group versus 5.0±5.5% in control group; P=0.02), likely through enhancement of p38 mitogen-activated protein kinase (MAPK) phosphorylation (0.77±0.40% ATF2 activation in the bosentan group versus 0.03±0.02% in controls; P=0.0002), mediated by endothelin receptor type-A. We further demonstrate that a water soluble inhibitor of p38 MAPK, SB203580 HCl, is a potent inhibitor of virus replication in the heart (0.28% antisense viral genome stained area for 3 mg/kg dose versus 2.9% stained area for controls; P=0.01), attenuates CVB3-induced myocardial damage (blinded cardiac histopathologic scores of 1.8±1.6 and 2.05±1.2 for the 3 mg/kg and 10 mg/kg doses, respectively, versus 3.25±1.2 for the controls), and preserves cardiac function (69±3.5% EF for 3 mg/kg dose and 71±6.7% EF for 10 mg/kg dose versus 60±1.5% EF control; P=0.038 and P=0.045, as compared to control, respectively). Bosentan, a prescribed vasodilator, improves cardiac function but enhances viral load and myocarditis severity through ETRA mediated p38 MAPK activation; p38 MAPK is a desirable antiviral target. Caution must be exercised during treatment of suspected infectious myocarditis with supportive vasoactive remedies.


European Respiratory Journal | 2015

Linking clinical phenotypes of chronic lung allograft dysfunction to changes in lung structure

Stijn Verleden; Dragoş M. Vasilescu; John E. McDonough; David Ruttens; Robin Vos; Elly Vandermeulen; Hannelore Bellon; Rachel Geenens; Erik Verbeken; Johny Verschakelen; Dirk Van Raemdonck; Wim Wuyts; Youri Sokolow; Christiane Knoop; Joel D. Cooper; James C. Hogg; Geert M. Verleden; Bart Vanaudenaerde

Chronic lung allograft dysfunction (CLAD) remains the major barrier to long-term success after lung transplantation. This report compares gross and microscopic features of lungs removed from patients receiving a redo-transplant as treatment for CLAD. Lungs donated by patients with either the bronchiolitis obliterans syndrome (BOS) or restrictive allograft syndrome (RAS) phenotype of CLAD and appropriate control lungs (eight per group) were air-inflated, frozen solid and kept frozen while a multi-detector computed tomography (MDCT) was obtained. The lung was then cut into 2-cm thick transverse slices and sampled for micro-CT and histopathology. The MDCT showed reduced lung volume with increased lung weight and density in RAS versus BOS and control (p<0.05). Although pre-terminal bronchioles were obstructed in both phenotypes, RAS lungs showed a reduction of pre-terminal bronchioles (p<0.01). Micro-CT and matched histopathology showed that RAS was associated with reduced numbers of terminal bronchioles/lung compared to BOS and controls (p<0.01), with expansion of the interstitial compartment and obliteration of the alveolar airspaces by fibrous connective tissue. RAS is associated with greater destruction of both pre-terminal and terminal bronchioles. Additionally, the interstitial compartments are expanded and alveolar airspaces are obliterated by accumulation of fibrous connective tissue. Restrictive allograft syndrome is associated with greater destruction of both pre-terminal and terminal bronchioles http://ow.ly/OlurI


COPD: Journal of Chronic Obstructive Pulmonary Disease | 2009

The disruption of the epithelial mesenchymal trophic unit in COPD.

Ali R. Behzad; John E. McDonough; Nazgol Seyednejad; James C. Hogg; David C. Walker

ABSTRACT Progression of COPD is associated with a measurable increase in small airway wall thickness resulting from a repair and remodeling process that involves fibroblasts of the epithelial mesenchymal trophic unit (EMTU). The present study was designed to examine the organization of fibroblasts within the lamina propria of small airways with respect to their contacts with the epithelium and with each other in persons with COPD. Transmission electron microcopy (TEM) and three-dimensional (3D) reconstructions of serial TEM sections were used to estimate the frequency and determine the nature of the contacts between the epithelium and fibroblasts within the EMTU in small airways from 5 controls (smokers with normal lung function), from 6 persons with mild (GOLD-1) and 5 with moderate (GOLD-2) COPD. In airways from control lungs fibroblasts make frequent contact with cytoplasmic extensions of epithelial cells through apertures in the epithelial basal lamina, but the frequency of these fibroblast-epithelial contacts is reduced in both mild and moderate COPD compared to controls (p < 0.01). The 3D reconstructions showed that the cytoplasmic extensions of lamina propria fibroblasts form a reticulum with fibroblast-fibroblast contacts in an airway from a control subject but this reticulum may be reorganized in airways of COPD patients. Development of COPD is associated with significant disruption of the EMTU due to a reduction of contacts between fibroblasts and the epithelium.


Chest | 2011

Patterns of Retention of Particulate Matter in Lung Tissues of Patients With COPD: Potential Role in Disease Progression

Sean H. Ling; John E. McDonough; John V. Gosselink; W. Mark Elliott; Shizu Hayashi; James C. Hogg; Stephan F. van Eeden

BACKGROUND Particulate matter (PM) is present in lung tissues of smokers and urban dwellers. This study was designed to quantify the burden of PM in different lung tissues of subjects with COPD and determine its relationship to disease severity. METHODS Surgical lung tissue samples from nonsmokers (control subjects) were compared with those from smokers with normal spirometry and subjects in the four other categories of the GOLD (Global Initiative for Obstructive Lung Disease) classification of COPD severity using quantitative histologic techniques. RESULTS PM was present in the lung parenchyma, blood vessel walls, airways, lymphoid follicles, and alveolar macrophages. The total burden of PM (volume fraction [Vv]) in all tissues of the lung was higher in smokers than nonsmokers (P < .001) and also in smokers with airflow obstruction compared with the smokers with normal spirometry (P < .01). There was an incremental increase in total PM burden with increased COPD severity that peaked in GOLD II and then trended downward in GOLD III and IV COPD. This same pattern of PM retention was also observed in alveolar walls. The total burden of PM in lung tissues correlated with a decline in FEV(1)/FVC as well as pack-years smoking. mRNA expression of fibrinogen (γ chain) correlated with total lung burden of PM and burden of PM in lung parenchyma (r(2) = 0.22, P < .001). CONCLUSIONS We conclude that retained PM is widely distributed in lung tissues of subjects with COPD and that cigarette smoke exposure and airflow obstruction are associated with retention of PM in lung tissues. We attribute the downward trend in PM burden in severe COPD to either less deposition and retention or selective removal of PM containing tissues by emphysematous destruction.


COPD: Journal of Chronic Obstructive Pulmonary Disease | 2014

Respiratory viral detection and small airway inflammation in lung tissue of patients with stable, mild COPD.

Soraya Utokaparch; Marc A. Sze; John V. Gosselink; John E. McDonough; W. Mark Elliott; James C. Hogg; Richard G. Hegele

Abstract Background: Viral respiratory tract infections are implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). In lung tissue specimens from patients with stable, mild COPD and from control smokers without airflow obstruction, we determined the prevalence and load of nucleic acid from common respiratory viruses and concomitant inflammation of small airways measuring less than 2-mm in diameter. Methods: Frozen lung tissue obtained from patients with stable, mild COPD (n = 20) and control subjects (n = 20) underwent real-time quantitative PCR (qPCR) for 13 respiratory viruses, and quantitative histology for inflammation of small airways. The two groups were compared for viral prevalence and load, and airway inflammation. The relationship between viral load and airway inflammatory cells was also analyzed. Results: Viral nucleic acid were detected in lung tissue of 18/40 (45.0%) of the individuals studied and included seven co-infections that were characterized by a “dominant virus” contributing to most of the total measured viral load. Lung tissue of COPD patients had a significantly higher prevalence of viral nucleic acid (particularly influenza A virus), and increased inflammation of small airways by macrophages and neutrophils versus controls. In qPCR-positive individuals, linear regression analysis showed a direct correlation between viral load and airway neutrophils, and between influenza A virus load and airway macrophages. Conclusion: The lung tissue of patients with stable, mild COPD has a higher prevalence and load of respiratory viruses versus non-obstructed control subjects, and increased inflammation of small airways. Respiratory viruses may represent potential targets in COPD patient management.

Collaboration


Dive into the John E. McDonough's collaboration.

Top Co-Authors

Avatar

James C. Hogg

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Joel D. Cooper

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John V. Gosselink

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Mark Elliott

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Bart Vanaudenaerde

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Stijn Verleden

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Marc A. Sze

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Johny Verschakelen

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge