Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John E. McGrady is active.

Publication


Featured researches published by John E. McGrady.


Accounts of Chemical Research | 2011

C-F and C-H bond activation of fluorobenzenes and fluoropyridines at transition metal centers: How fluorine tips the scales

Eric Clot; Odile Eisenstein; Naseralla A. Jasim; Stuart A. Macgregor; John E. McGrady; Robin N. Perutz

In this Account, we describe the transition metal-mediated cleavage of C-F and C-H bonds in fluoroaromatic and fluoroheteroaromatic molecules. The simplest reactions of perfluoroarenes result in C-F oxida tive addition, but C-H activation competes with C-F activation for partially fluorinated molecules. We first consider the reactivity of the fluoroaromatics toward nickel and platinum complexes, but extend to rhenium and rhodium where they give special insight. Sections on spectroscopy and molecular structure are followed by discussions of energetics and mechanism that incorporate experimental and computational results. We highlight special characteristics of the metal-fluorine bond and the influence of the fluorine substituents on energetics and mechanism. Fluoroaromatics reacting at an ML(2) center initially yield η(2)-arene complexes, followed usually by oxidative addition to generate MF(Ar(F))(L)(2) or MH(Ar(F))(L)(2) (M is Ni, Pd, or Pt; L is trialkylphosphine). The outcome of competition between C-F and C-H bond activation is strongly metal dependent and regioselective. When C-H bonds of fluoroaromatics are activated, there is a preference for the remaining C-F bonds to lie ortho to the metal. An unusual feature of metal-fluorine bonds is their response to replacement of nickel by platinum. The Pt-F bonds are weaker than their nickel counterparts; the opposite is true for M-H bonds. Metal-fluorine bonds are sufficiently polar to form M-F···H-X hydrogen bonds and M-F···I-C(6)F(5) halogen bonds. In the competition between C-F and C-H activation, the thermodynamic product is always the metal fluoride, but marked differences emerge between metals in the energetics of C-H activation. In metal-fluoroaryl bonds, ortho-fluorine substituents generally control regioselectivity and make C-H activation more energetically favorable. The role of fluorine substituents in directing C-H activation is traced to their effect on bond energies. Correlations between M-C and H-C bond energies demonstrate that M-C bond energies increase far more on ortho-fluorine substitution than do H-C bonds. Conventional oxidative addition reactions involve a three-center triangular transition state between the carbon, metal, and X, where X is hydrogen or fluorine, but M(d)-F(2p) repulsion raises the activation energies when X is fluorine. Platinum complexes exhibit an alternative set of reactions involving rearrangement of the phosphine and the fluoroaromatics to a metal(alkyl)(fluorophosphine), M(R)(Ar(F))(PR(3))(PR(2)F). In these phosphine-assisted C-F activation reactions, the phosphine is no spectator but rather is intimately involved as a fluorine acceptor. Addition of the C-F bond across the M-PR(3) bond leads to a metallophosphorane four-center transition state; subsequent transfer of the R group to the metal generates the fluorophosphine product. We find evidence that a phosphine-assisted pathway may even be significant in some apparently simple oxidative addition reactions. While transition metal catalysis has revolutionized hydrocarbon chemistry, its impact on fluorocarbon chemistry has been more limited. Recent developments have changed the outlook as catalytic reactions involving C-F or C-H bond activation of fluorocarbons have emerged. The principles established here have several implications for catalysis, including the regioselectivity of C-H activation and the unfavorable energetics of C-F reductive elimination. Palladium-catalyzed C-H arylation is analyzed to illustrate how ortho-fluorine substituents influence thermodynamics, kinetics, and regioselectivity.


Journal of the American Chemical Society | 2008

Competing C−F Activation Pathways in the Reaction of Pt(0) with Fluoropyridines: Phosphine-Assistance versus Oxidative Addition

Ainara Nova; Stefan Erhardt; Naseralla A. Jasim; Robin N. Perutz; Stuart A. Macgregor; John E. McGrady; Adrian C. Whitwood

A survey of computed mechanisms for C-F bond activation at the 4-position of pentafluoropyridine by the model zero-valent bis-phosphine complex, [Pt(PH3)(PH2Me)], reveals three quite distinct pathways leading to square-planar Pt(II) products. Direct oxidative addition leads to cis-[Pt(F)(4-C5NF4)(PH3)(PH2Me)] via a conventional 3-center transition state. This process competes with two different phosphine-assisted mechanisms in which C-F activation involves fluorine transfer to a phosphorus center via novel 4-center transition states. The more accessible of the two phosphine-assisted processes involves concerted transfer of an alkyl group from phosphorus to the metal to give a platinum(alkyl)(fluorophosphine), trans-[Pt(Me)(4-C5NF4)(PH3)(PH2F)], analogues of which have been observed experimentally. The second phosphine-assisted pathway sees fluorine transfer to one of the phosphine ligands with formation of a metastable metallophosphorane intermediate from which either alkyl or fluorine transfer to the metal is possible. Both Pt-fluoride and Pt(alkyl)(fluorophosphine) products are therefore accessible via this route. Our calculations highlight the central role of metallophosphorane species, either as intermediates or transition states, in aromatic C-F bond activation. In addition, the similar computed barriers for all three processes suggest that Pt-fluoride species should be accessible. This is confirmed experimentally by the reaction of [Pt(PR3)2] species (R = isopropyl (iPr), cyclohexyl (Cy), and cyclopentyl (Cyp)) with 2,3,5-trifluoro-4-(trifluoromethyl)pyridine to give cis-[Pt(F){2-C5NHF2(CF3)}(PR3)2]. These species subsequently convert to the trans-isomers, either thermally or photochemically. The crystal structure of cis-[Pt(F){2-C5NHF2(CF3)}(P iPr3)2] shows planar coordination at Pt with r(F-Pt) = 2.029(3) A and P(1)-Pt-P(2) = 109.10(3) degrees. The crystal structure of trans-[Pt(F){2-C5NHF2(CF3)}(PCyp3)2] shows standard square-planar coordination at Pt with r(F-Pt) = 2.040(19) A.


Chemical Communications | 2009

Synthesis and structural characterisation of stable cationic gold(I) alkene complexes

Thomas N. Hooper; Michael Green; John E. McGrady; Jaynika R. Patel; Christopher A. Russell

Treatment of [AuCl(PBu(t)(3))] with AgSbF(6) in CH(2)Cl(2) at room temperature in the presence of the alkenes norbornene, norbornadiene, trans-cyclooctene, and also interestingly, isobutylene, leads to the formation of stable crystalline complexes [Au(PBu(t)(3))(alkene)][SbF(6)], characterised by NMR spectroscopy and X-ray crystallography.


Journal of the American Chemical Society | 2011

Energetics of Halogen Bonding of Group 10 Metal Fluoride Complexes

Torsten Beweries; Lee Brammer; Naseralla A. Jasim; John E. McGrady; Robin N. Perutz; Adrian C. Whitwood

A study is presented of the thermodynamics of the halogen-bonding interaction of C(6)F(5)I with a series of structurally similar group 10 metal fluoride complexes trans-[Ni(F)(2-C(5)NF(4))(PCy(3))(2)] (2), trans-[Pd(F)(4-C(5)NF(4))(PCy(3))(2)] (3), trans-[Pt(F){2-C(5)NF(2)H(CF(3))}(PR(3))(2)] (4a, R = Cy; 4bR = iPr) and trans-[Ni(F){2-C(5)NF(2)H(CF(3))}(PCy(3))(2)] (5a) in toluene solution. (19)F NMR titration experiments are used to determine binding constants, enthalpies and entropies of these interactions (2.4 ≤ K(300) ≤ 5.2; -25 ≤ ΔH(o) ≤ -16 kJ mol(-1); -73 ≤ ΔS(o) ≤ -49 J K(-1) mol(-1)). The data for -ΔH(o) for the halogen bonding follow a trend Ni < Pd < Pt. The fluoropyridyl ligand is shown to have a negligible influence on the thermodynamic data, but the influence of the phosphine ligand is significant. We also show that the value of the spin-spin coupling constant J(PtF) increases substantially with adduct formation. X-ray crystallographic data for Ni complexes 5a and 5c are compared to previously published data for a platinum analogue. We show by experiment and computation that the difference between Pt-X and Ni-X (X = F, C, P) bond lengths is greatest for X = F, consistent with F(2pπ)-Pt(5dπ) repulsive interactions. DFT calculations on the metal fluoride complexes show the very negative electrostatic potential around the fluoride. Calculations of the enthalpy of adduct formation show energies of -18.8 and -22.8 kJ mol(-1) for Ni and Pt complexes of types 5 and 4, respectively, in excellent agreement with experiment.


Journal of the American Chemical Society | 2014

Synthesis and characterization of [Ru@Ge12]3-: an endohedral 3-connected cluster.

Jack C. A. Duckworth; William K. Myers; John E. McGrady; Jose M. Goicoechea

The 12-vertex endohedral cluster [Ru@Ge12](3-) reveals an unprecedented D2d-symmetric 3-connected polyhedral geometry. The structure contrasts dramatically with the known deltahedral or approximately deltahedral geometries of [M@Pb12](2-) (M = Ni, Pd, Pt) and [Mn@Pb12](3-) and is a result of extensive delocalization of electron density from the transition-metal center onto the cage.


Journal of the American Chemical Society | 2014

Hydrogen Activation by an Aromatic Triphosphabenzene

Lauren E. Longobardi; Christopher A. Russell; Michael Green; Nell S. Townsend; Kun Wang; Arthur J. Holmes; Simon B. Duckett; John E. McGrady; Douglas W. Stephan

Aromatic hydrogenation is a challenging transformation typically requiring alkali or transition metal reagents and/or harsh conditions to facilitate the process. In sharp contrast, the aromatic heterocycle 2,4,6-tri-tert-butyl-1,3,5-triphosphabenzene is shown to be reduced under 4 atm of H2 to give [3.1.0]bicylo reduction products, with the structure of the major isomer being confirmed by X-ray crystallography. NMR studies show this reaction proceeds via a reversible 1,4-H2 addition to generate an intermediate species, which undergoes an irreversible suprafacial hydride shift concurrent with P-P bond formation to give the isolated products. Further, para-hydrogen experiments confirmed the addition of H2 to triphosphabenzene is a bimolecular process. Density functional theory (DFT) calculations show that facile distortion of the planar triphosphabenzene toward a boat-conformation provides a suprafacial combination of vacant acceptor and donor orbitals that permits this direct and uncatalyzed reduction of the aromatic molecule.


Journal of the American Chemical Society | 2011

Influence of low-symmetry distortions on electron transport through metal atom chains: when is a molecular wire really "broken"?

Vihar P. Georgiev; John E. McGrady

In the field of molecular electronics, an intimate link between the delocalization of molecular orbitals and their ability to support current flow is often assumed. Delocalization, in turn, is generally regarded as being synonymous with structural symmetry, for example, in the lengths of the bonds along a molecular wire. In this work, we use density functional theory in combination with nonequilibrium Greens functions to show that precisely the opposite is true in the extended metal atom chain Cr(3)(dpa)(4)(NCS)(2) where the delocalized π framework has previously been proposed to be the dominant conduction pathway. Low-symmetry distortions of the Cr(3) core do indeed reduce the effectiveness of these π channels, but this is largely irrelevant to electron transport at low bias simply because they lie far below the Fermi level. Instead, the dominant pathway is through higher-lying orbitals of σ symmetry, which remain essentially unperturbed by even quite substantial distortions. In fact, the conductance is actually increased marginally because the σ(nb) channel is displaced upward toward the Fermi level. These calculations indicate a subtle and counterintuitive relationship between structure and function in these metal chains that has important implications for the interpretation of data emerging from scanning tunnelling and atomic force microscopy experiments.


Dalton Transactions | 2011

On the mechanism of water oxidation by a bimetallic manganese catalyst: A density functional study

W. M. C. Sameera; Christine J. McKenzie; John E. McGrady

Density functional theory is used to explore possible mechanisms that lead to water oxidation by a bimetallic manganese catalyst developed by McKenzie and co-workers. On the basis of our calculations we propose that the key active intermediate is a mixed valent Mn(III)(μ-O)Mn(IV)-O˙ oxyl radical species, the oxyl centre being the site of nucleophilic attack by water. The mixed-valent species is in equilibrium with an isomeric diamond-core Mn(IV)(μ-O)(2)Mn(IV) structure, which acts as reservoir for the active species. The chemistry appears to be unique to pentadentate ligands because these shift the position of the equilibrium between the Mn(III)(μ-O)Mn(IV)-O˙ and Mn(IV)(μ-O)(2)Mn(IV) isomers, such that significant concentrations of the former are present in solution.


Inorganic Chemistry | 2011

Isolation and assessment of the molecular and electronic structures of azo-anion-radical complexes of chromium and molybdenum. Experimental and theoretical characterization of complete electron-transfer series.

Sucheta Joy; Tobias Krämer; Nanda D. Paul; Priyabrata Banerjee; John E. McGrady; Sreebrata Goswami

The reaction of 3 equiv of the ligand 2-[(2-chlorophenyl)azo]pyridine (L(a)) or 2-[(4-chlorophenyl)azo]pyridine (L(b)) with 1 equiv of Cr(CO)(6) or Mo(CO)(6) in boiling n-octane afforded [Cr(L(a/b))(3)](0) (1a and 1b) and [Mo(L(a/b))(3)](0) (2a and 2b). The chemical oxidation reaction of these neutral complexes with I(2) in CH(2)Cl(2) provided access to air-stable one-electron-oxidized species as their triiodide (I(3)(-)) salts. The electronic structures of chromium and molybdenum centers coordinated by the three redox noninnocent ligands L(a/b) along with their redox partners have been elucidated by using a host of physical methods: X-ray crystallography, magnetic susceptibility measurements, nuclear magnetic resonance, cyclic voltammetry, absorption spectroscopy, electron paramagnetic resonance spectroscopy, and density functional theory. The four representative complexes, 1a, [1a]I(3), 2a, and [2a]I(3), have been characterized by X-ray crystallography. The results indicate a predominant azo-anion-radical description of the ligands in the neutral chromium(III) species, [Cr(III)(L(•-))(3)], affording a singlet ground state through strong metal-ligand antiferromagnetic coupling. All of the electrochemical processes are ligand-based; i.e., the half-filled (t(2g))(3) set of the Cr(III) d(3) ion remains unchanged throughout. The description of the molybdenum analogue is less clear-cut because mixing between metal- and ligand-based orbitals is more significant. On the basis of variations in net spin densities and orbital compositions, we argue that the oxidation events are again primarily ligand-based, although the electron density at the molybdenum center is clearly more variable than that at the chromium center in the corresponding series [1a](+), 1a, and [1a](-).


Inorganic Chemistry | 2011

A highly distorted open-shell endohedral Zintl cluster: [Mn@Pb12]3-.

Binbin Zhou; Tobias Krämer; Amber L. Thompson; John E. McGrady; Jose M. Goicoechea

Reaction of an ethylenediamine (en) solution of K(4)Pb(9) and 2,2,2-crypt (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) with a tetrahydrofuran (THF) solution of Mn(3)(Mes)(6) (Mes = 2,4,6-trimethylphenyl) yielded the anionic cluster [Mn@Pb(12)](3-). This species was observed in the positive and negative ion-mode electrospray mass-spectra of the crude reaction mixture. The crystalline samples obtained from such solutions allowed us to confirm the composition of the sample as [K(2,2,2-crypt)](3)[Mn@Pb(12)]·1.5en (1). Because of numerous issues related to crystal sample quality and crystallographic disorder a high-quality crystal structure solution could not be obtained. Despite this, however, the data collected permit us to draw reasonable conclusions about the charge and connectivity of the [Mn@Pb(12)](3-) cluster anion. Crystals of 1 were further characterized by elemental analysis and electron paramagnetic resonance (EPR). Density Functional Theory (DFT) calculations on such a system reveal a highly distorted endohedral cluster anion, consistent with the structural distortions observed by single crystal X-ray diffraction. The cluster anions are considerably expanded compared to the 36-electron closed-shell analogue [Ni@Pb(12)](2-) and, moreover, exhibit significant low-symmetry distortions from the idealized icosahedral (I(h)) geometry that is characteristic of related endohedral clusters. Our computations indicate that there is substantial transfer of electron density from the formally Mn(-I) center to the low-lying vacant orbitals of the [Pb(12)](2-) cage.

Collaboration


Dive into the John E. McGrady's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Stranger

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Feliu Maseras

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Green

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raphael G. Raptis

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge