Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John E. Tavis is active.

Publication


Featured researches published by John E. Tavis.


Journal of Experimental Medicine | 2005

Immune evasion versus recovery after acute hepatitis C virus infection from a shared source

Ian A. Tester; Susan Smyk-Pearson; Ping Wang; Anne M. Wertheimer; Ermei Yao; David M. Lewinsohn; John E. Tavis; Hugo R. Rosen

Acute infection with hepatitis C virus (HCV) rarely is identified, and hence, the determinants of spontaneous resolution versus chronicity remain incompletely understood. In particular, because of the retrospective nature and unknown source of infection in most human studies, direct evidence for emergence of escape mutations in immunodominant major histocompatibility complex class I–restricted epitopes leading to immune evasion is extremely limited. In two patients infected accidentally with an identical HCV strain but who developed divergent outcomes, the total lack of HCV-specific CD4+ T cells in conjunction with vigorous CD8+ T cells that targeted a single epitope in one patient was associated with mutational escape and viral persistence. Statistical evidence for positive Darwinian selective pressure against an immunodominant epitope is presented. Wild-type cytotoxic T lymphocytes persisted even after the cognate antigen was no longer present.


Hepatology | 2010

Multiple Effects of Silymarin on the Hepatitis C Virus Lifecycle

Jessica Wagoner; Amina Negash; Olivia J. Kane; Laura Martinez; Yaakov Nahmias; Nigel Bourne; David M. Owen; Joe Grove; Claire L. Brimacombe; Jane A. McKeating; Eve-Isabelle Pécheur; Tyler N. Graf; Nicholas H. Oberlies; Volker Lohmann; Feng Cao; John E. Tavis; Stephen J. Polyak

Silymarin, an extract from milk thistle (Silybum marianum), and its purified flavonolignans have been recently shown to inhibit hepatitis C virus (HCV) infection, both in vitro and in vivo. In the current study, we further characterized silymarins antiviral actions. Silymarin had antiviral effects against hepatitis C virus cell culture (HCVcc) infection that included inhibition of virus entry, RNA and protein expression, and infectious virus production. Silymarin did not block HCVcc binding to cells but inhibited the entry of several viral pseudoparticles (pp), and fusion of HCVpp with liposomes. Silymarin but not silibinin inhibited genotype 2a NS5B RNA‐dependent RNA polymerase (RdRp) activity at concentrations 5 to 10 times higher than required for anti‐HCVcc effects. Furthermore, silymarin had inefficient activity on the genotype 1b BK and four 1b RDRPs derived from HCV‐infected patients. Moreover, silymarin did not inhibit HCV replication in five independent genotype 1a, 1b, and 2a replicon cell lines that did not produce infectious virus. Silymarin inhibited microsomal triglyceride transfer protein activity, apolipoprotein B secretion, and infectious virion production into culture supernatants. Silymarin also blocked cell‐to‐cell spread of virus. Conclusion: Although inhibition of in vitro NS5B polymerase activity is demonstrable, the mechanisms of silymarins antiviral action appear to include blocking of virus entry and transmission, possibly by targeting the host cell. HEPATOLOGY 2010


Hepatology | 2013

Sexual transmission of hepatitis C virus among monogamous heterosexual couples: the HCV partners study.

Norah A. Terrault; Jennifer L. Dodge; Edward L. Murphy; John E. Tavis; Alexi Kiss; Theodore R. Levin; Robert G. Gish; Michael P. Busch; Arthur Reingold; Miriam J. Alter

The efficiency of hepatitis C virus (HCV) transmission by sexual activity remains controversial. We conducted a cross‐sectional study of HCV‐positive subjects and their partners to estimate the risk for HCV infection among monogamous heterosexual couples. A total of 500 anti–HCV‐positive, human immunodeficiency virus–negative index subjects and their long‐term heterosexual partners were studied. Couples were interviewed separately for lifetime risk factors for HCV infection, within‐couple sexual practices, and sharing of personal grooming items. Blood samples were tested for anti‐HCV, HCV RNA, and HCV genotype and serotype. Sequencing and phylogenetic analysis determined the relatedness of virus isolates among genotype‐concordant couples. The majority of HCV‐positive index subjects were non‐Hispanic white, with a median age of 49 years (range, 26‐79 years) and median of 15 years (range, 2‐52 years) of sexual activity with their partners. Overall, HCV prevalence among partners was 4% (n = 20), and nine couples had concordant genotype/serotype. Viral isolates in three couples (0.6%) were highly related, consistent with transmission of virus within the couple. Based on 8,377 person‐years of follow‐up, the maximum incidence rate of HCV transmission by sex was 0.07% per year (95% confidence interval, 0.01‐0.13) or approximately one per 190,000 sexual contacts. No specific sexual practices were related to HCV positivity among couples. Conclusion: The results of this study provide quantifiable risk information for counseling long‐term monogamous heterosexual couples in which one partner has chronic HCV infection. In addition to the extremely low estimated risk for HCV infection in sexual partners, the lack of association with specific sexual practices provides unambiguous and reassuring counseling messages. (HEPATOLOGY 2013)


Journal of Virology | 2007

Changes in Gene Expression during Pegylated Interferon and Ribavirin Therapy of Chronic Hepatitis C Virus Distinguish Responders from Nonresponders to Antiviral Therapy

Milton W. Taylor; Takuma Tsukahara; Leonid Brodsky; Joel Schaley; Corneliu Sanda; Matthew J. Stephens; Jeanette N. McClintick; Howard J. Edenberg; Lang Li; John E. Tavis; Charles D. Howell; Steven H. Belle

ABSTRACT Treating chronic hepatitis C virus (HCV) infection using pegylated alpha interferon and ribavirin leads to sustained clearance of virus and clinical improvement in approximately 50% of patients. Response rates are lower among patients with genotype 1 than with genotypes 2 and 3 and among African-American (AA) patients compared to Caucasian (CA) patients. Using DNA microarrays, gene expression was assessed for a group of 33 African-American and 36 Caucasian American patients with chronic HCV genotype 1 infection during the first 28 days of treatment. Results were examined with respect to treatment responses and to race. Patients showed a response to treatment at the gene expression level in RNA isolated from peripheral blood mononuclear cells irrespective of degree of decrease in HCV RNA levels. However, gene expression responses were relatively blunted in patients with poor viral response (<1.5 log10-IU/ml decrease at 28 days) compared to those in patients with a marked (>3.5 log10-IU/ml decrease) or intermediate (1.5 to 3.5 log10-IU/ml decrease) response. The number of genes that were up- or down-regulated by pegylated interferon and ribavirin treatment was fewer in patients with a poor response than in those with an intermediate or marked viral response. However AA patients had a stronger interferon response than CA patients in general. The induced levels of known interferon-stimulated genes such as the 2′5′-oligoadenylate synthetase, MX1, IRF-7, and toll-like receptor TLR-7 genes was lower in poor-response patients than in marked- or intermediate-response patients. Thus, the relative lack of viral response to interferon therapy of hepatitis C virus infection is associated with blunted interferon cell signaling. No specific regulatory gene could be identified as responsible for this global blunting or the racial differences.


Journal of Virology | 2007

Pretreatment Sequence Diversity Differences in the Full-Length Hepatitis C Virus Open Reading Frame Correlate with Early Response to Therapy

Maureen J. Donlin; Nathan A. Cannon; Ermei Yao; Jia Li; Abdus S. Wahed; Milton W. Taylor; Steven H. Belle; Adrian M. Di Bisceglie; Rajeev Aurora; John E. Tavis

ABSTRACT Pegylated alpha interferon and ribavirin therapy for hepatitis C virus (HCV) genotype 1 infection fails for half of Caucasian American patients (CA) and more often for African Americans (AA). The reasons for these low response rates are unknown. HCV is highly genetically variable, but it is unknown how this variability affects response to therapy. To assess effects of viral diversity on response to therapy, the complete pretreatment genotype 1 HCV open reading frame was sequenced using samples from 94 participants in the Virahep-C study. Sequences from patients with >3.5 log declines in viral RNA levels by day 28 (marked responders) were more variable than those from patients with declines of <1.4 log (poor responders) in NS3 and NS5A for genotype 1a and in core and NS3 for genotype 1b. These correlations remained when all T-cell epitopes were excluded, indicating that these differences were not due to differential immune selection. When the sequences were compared by race of the patients, higher diversity in CA patients was found in E2 and NS2 but only for genotype 1b. Core, NS3, and NS5A can block the action of alpha interferon in vitro; hence, these genetic patterns are consistent with multiple amino acid variations independently impairing the function of HCV proteins that counteract interferon responses in humans, resulting in HCV strains with variable sensitivity to therapy. No evidence was found for novel HCV strains in the AA population, implying that AA patients may be infected with a higher proportion of the same resistant strains that are found in CA patients.


Journal of Clinical Investigation | 2009

Loss of viral fitness and cross-recognition by CD8+ T cells limit HCV escape from a protective HLA-B27–restricted human immune response

Eva Dazert; Christoph Neumann-Haefelin; Stéphane Bressanelli; Karen Fitzmaurice; Julia Kort; Jörg Timm; Susan McKiernan; Dermot Kelleher; Norbert H. Gruener; John E. Tavis; Hugo R. Rosen; Jaqueline Shaw; Paul Bowness; Hubert E. Blum; Paul Klenerman; Ralf Bartenschlager; Robert Thimme

There is an association between expression of the MHC class I molecule HLA-B27 and protection following human infection with either HIV or HCV. In both cases, protection has been linked to HLA-B27 presentation of a single immunodominant viral peptide epitope to CD8+ T cells. If HIV mutates the HLA-B27-binding anchor of this epitope to escape the protective immune response, the result is a less-fit virus that requires additional compensatory clustered mutations. Here, we sought to determine whether the immunodominant HLA-B27-restricted HCV epitope was similarly constrained by analyzing the replication competence and immunogenicity of different escape mutants. Interestingly, in most HLA-B27-positive patients chronically infected with HCV, the escape mutations spared the HLA-B27-binding anchor. Instead, the escape mutations were clustered at other sites within the epitope and had only a modest impact on replication competence. Further analysis revealed that the cluster of mutations is required for efficient escape because a combination of mutations is needed to impair T cell recognition of the epitope. Artificially introduced mutations at the HLA-B27-binding anchors were found to be either completely cross-reactive or to lead to substantial loss of fitness. These results suggest that protection by HLA-B27 in HCV infection can be explained by the requirement to accumulate a cluster of mutations within the immunodominant epitope to escape T cell recognition.


Journal of Clinical Investigation | 2008

Genome-wide hepatitis C virus amino acid covariance networks can predict response to antiviral therapy in humans

Rajeev Aurora; Maureen J. Donlin; Nathan A. Cannon; John E. Tavis

Hepatitis C virus (HCV) is a common RNA virus that causes hepatitis and liver cancer. Infection is treated with IFN-alpha and ribavirin, but this expensive and physically demanding therapy fails in half of patients. The genomic sequences of independent HCV isolates differ by approximately 10%, but the effects of this variation on the response to therapy are unknown. To address this question, we analyzed amino acid covariance within the full viral coding region of pretherapy HCV sequences from 94 participants in the Viral Resistance to Antiviral Therapy of Chronic Hepatitis C (Virahep-C) clinical study. Covarying positions were common and linked together into networks that differed by response to therapy. There were 3-fold more hydrophobic amino acid pairs in HCV from nonresponding patients, and these hydrophobic interactions were predicted to contribute to failure of therapy by stabilizing viral protein complexes. Using our analysis to detect patterns within the networks, we could predict the outcome of therapy with greater than 95% coverage and 100% accuracy, raising the possibility of a prognostic test to reduce therapeutic failures. Furthermore, the hub positions in the networks are attractive antiviral targets because of their genetic linkage with many other positions that we predict would suppress evolution of resistant variants. Finally, covariance network analysis could be applicable to any virus with sufficient genetic variation, including most human RNA viruses.


PLOS Pathogens | 2013

The Hepatitis B Virus Ribonuclease H Is Sensitive to Inhibitors of the Human Immunodeficiency Virus Ribonuclease H and Integrase Enzymes

John E. Tavis; Xiaohong Cheng; Yuan Hu; Michael Totten; Feng Cao; Eleftherios Michailidis; Rajeev Aurora; Marvin J. Meyers; E. Jon Jacobsen; Michael A. Parniak; Stefan G. Sarafianos

Nucleos(t)ide analog therapy blocks DNA synthesis by the hepatitis B virus (HBV) reverse transcriptase and can control the infection, but treatment is life-long and has high costs and unpredictable long-term side effects. The profound suppression of HBV by the nucleos(t)ide analogs and their ability to cure some patients indicates that they can push HBV to the brink of extinction. Consequently, more patients could be cured by suppressing HBV replication further using a new drug in combination with the nucleos(t)ide analogs. The HBV ribonuclease H (RNAseH) is a logical drug target because it is the second of only two viral enzymes that are essential for viral replication, but it has not been exploited, primarily because it is very difficult to produce active enzyme. To address this difficulty, we expressed HBV genotype D and H RNAseHs in E. coli and enriched the enzymes by nickel-affinity chromatography. HBV RNAseH activity in the enriched lysates was characterized in preparation for drug screening. Twenty-one candidate HBV RNAseH inhibitors were identified using chemical structure-activity analyses based on inhibitors of the HIV RNAseH and integrase. Twelve anti-RNAseH and anti-integrase compounds inhibited the HBV RNAseH at 10 µM, the best compounds had low micromolar IC50 values against the RNAseH, and one compound inhibited HBV replication in tissue culture at 10 µM. Recombinant HBV genotype D RNAseH was more sensitive to inhibition than genotype H. This study demonstrates that recombinant HBV RNAseH suitable for low-throughput antiviral drug screening has been produced. The high percentage of compounds developed against the HIV RNAseH and integrase that were active against the HBV RNAseH indicates that the extensive drug design efforts against these HIV enzymes can guide anti-HBV RNAseH drug discovery. Finally, differential inhibition of HBV genotype D and H RNAseHs indicates that viral genetic variability will be a factor during drug development.


PLOS ONE | 2011

Differential in vitro effects of intravenous versus oral formulations of silibinin on the HCV life cycle and inflammation.

Jessica Wagoner; Chihiro Morishima; Tyler N. Graf; Nicholas H. Oberlies; Elodie Teissier; Eve Isabelle Pécheur; John E. Tavis; Stephen J. Polyak

Silymarin prevents liver disease in many experimental rodent models, and is the most popular botanical medicine consumed by patients with hepatitis C. Silibinin is a major component of silymarin, consisting of the flavonolignans silybin A and silybin B, which are insoluble in aqueous solution. A chemically modified and soluble version of silibinin, SIL, has been shown to potently reduce hepatitis C virus (HCV) RNA levels in vivo when administered intravenously. Silymarin and silibinin inhibit HCV infection in cell culture by targeting multiple steps in the virus lifecycle. We tested the hepatoprotective profiles of SIL and silibinin in assays that measure antiviral and anti-inflammatory functions. Both mixtures inhibited fusion of HCV pseudoparticles (HCVpp) with fluorescent liposomes in a dose-dependent fashion. SIL inhibited 5 clinical genotype 1b isolates of NS5B RNA dependent RNA polymerase (RdRp) activity better than silibinin, with IC50 values of 40–85 µM. The enhanced activity of SIL may have been in part due to inhibition of NS5B binding to RNA templates. However, inhibition of the RdRps by both mixtures plateaued at 43–73%, suggesting that the products are poor overall inhibitors of RdRp. Silibinin did not inhibit HCV replication in subgenomic genotype 1b or 2a replicon cell lines, but it did inhibit JFH-1 infection. In contrast, SIL inhibited 1b but not 2a subgenomic replicons and also inhibited JFH-1 infection. Both mixtures inhibited production of progeny virus particles. Silibinin but not SIL inhibited NF-κB- and IFN-B-dependent transcription in Huh7 cells. However, both mixtures inhibited T cell proliferation to similar degrees. These data underscore the differences and similarities between the intravenous and oral formulations of silibinin, which could influence the clinical effects of this mixture on patients with chronic liver diseases.


Antiviral Research | 2013

β-Thujaplicinol inhibits hepatitis B virus replication by blocking the viral ribonuclease H activity.

Yuan Hu; Xiaohong Cheng; Feng Cao; Ailong Huang; John E. Tavis

Hepatitis B virus (HBV) is a hepatotropic DNA virus that replicates by reverse transcription. It chronically infects >350 million people and kills about 1 million patients annually. Therapy primarily employs nucleos(t)ide analogs that suppress viral DNA synthesis by the viral reverse transcriptase very well but that rarely cure the infection, so additional therapies are needed. Reverse transcription requires the viral ribonuclease H (RNAseH) to destroy the viral RNA after it has been copied into DNA. We recently produced active recombinant HBV RNAseH and demonstrated that Human Immunodeficiency Virus (HIV) RNAseH antagonists could inhibit the HBV enzyme at a high frequency. Here, we extended these results to β-thujaplicinol, a hydroxylated tropolone which inhibits the HIV RNAseH. β-Thujaplicinol inhibited RNAseHs from HBV genotype D and H in biochemical assays with IC₅₀ values of 5.9±0.7 and 2.3±1.7 μM, respectively. It blocked replication of HBV genotypes A and D in culture by inhibiting the RNAseH activity with an estimated EC₅₀ of ∼5 μM and a CC₅₀ of 10.1±1. 7 μM. Activity of β-thujaplicinol against RNAseH sequences from multiple HBV genotypes implies that if chemical derivatives of β-thujaplicinol with improved efficacy and reduced toxicity can be identified, they would have promise as anti-HBV agents.

Collaboration


Dive into the John E. Tavis's collaboration.

Top Co-Authors

Avatar

Feng Cao

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ermei Yao

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan P. Murelli

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianming Hu

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge