Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajeev Aurora is active.

Publication


Featured researches published by Rajeev Aurora.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes

Jana Stöckel; Eric A. Welsh; Michelle Liberton; Rangesh Kunnvakkam; Rajeev Aurora; Himadri B. Pakrasi

Cyanobacteria are photosynthetic organisms and are the only prokaryotes known to have a circadian lifestyle. Unicellular diazotrophic cyanobacteria such as Cyanothece sp. ATCC 51142 produce oxygen and can also fix atmospheric nitrogen, a process exquisitely sensitive to oxygen. To accommodate such antagonistic processes, the intracellular environment of Cyanothece oscillates between aerobic and anaerobic conditions during a day–night cycle. This is accomplished by temporal separation of the two processes: photosynthesis during the day and nitrogen fixation at night. Although previous studies have examined periodic changes in transcript levels for a limited number of genes in Cyanothece and other unicellular diazotrophic cyanobacteria, a comprehensive study of transcriptional activity in a nitrogen-fixing cyanobacterium is necessary to understand the impact of the temporal separation of photosynthesis and nitrogen fixation on global gene regulation and cellular metabolism. We have examined the expression patterns of nearly 5,000 genes in Cyanothece 51142 during two consecutive diurnal periods. Our analysis showed that ≈30% of these genes exhibited robust oscillating expression profiles. Interestingly, this set included genes for almost all central metabolic processes in Cyanothece 51142. A transcriptional network of all genes with significantly oscillating transcript levels revealed that the majority of genes encoding enzymes in numerous individual biochemical pathways, such as glycolysis, oxidative pentose phosphate pathway, and glycogen metabolism, were coregulated and maximally expressed at distinct phases during the diurnal cycle. These studies provide a comprehensive picture of how a physiologically relevant diurnal light–dark cycle influences the metabolism in a photosynthetic bacterium.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle

Eric A. Welsh; Michelle Liberton; Jana Stöckel; Thomas Loh; Thanura R. Elvitigala; Chunyan Wang; Aye Wollam; Robert S. Fulton; Sandra W. Clifton; Jon M. Jacobs; Rajeev Aurora; Bijoy K. Ghosh; Louis A. Sherman; Richard D. Smith; Richard Wilson; Himadri B. Pakrasi

Unicellular cyanobacteria have recently been recognized for their contributions to nitrogen fixation in marine environments, a function previously thought to be filled mainly by filamentous cyanobacteria such as Trichodesmium. To begin a systems level analysis of the physiology of the unicellular N2-fixing microbes, we have sequenced to completion the genome of Cyanothece sp. ATCC 51142, the first such organism. Cyanothece 51142 performs oxygenic photosynthesis and nitrogen fixation, separating these two incompatible processes temporally within the same cell, while concomitantly accumulating metabolic products in inclusion bodies that are later mobilized as part of a robust diurnal cycle. The 5,460,377-bp Cyanothece 51142 genome has a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of a linear element in the genome of a photosynthetic bacterium. On the 429,701-bp linear chromosome is a cluster of genes for enzymes involved in pyruvate metabolism, suggesting an important role for the linear chromosome in fermentative processes. The annotation of the genome was significantly aided by simultaneous global proteomic studies of this organism. Compared with other nitrogen-fixing cyanobacteria, Cyanothece 51142 contains the largest intact contiguous cluster of nitrogen fixation-related genes. We discuss the implications of such an organization on the regulation of nitrogen fixation. The genome sequence provides important information regarding the ability of Cyanothece 51142 to accomplish metabolic compartmentalization and energy storage, as well as how a unicellular bacterium balances multiple, often incompatible, processes in a single cell.


Journal of Virology | 2007

Pretreatment Sequence Diversity Differences in the Full-Length Hepatitis C Virus Open Reading Frame Correlate with Early Response to Therapy

Maureen J. Donlin; Nathan A. Cannon; Ermei Yao; Jia Li; Abdus S. Wahed; Milton W. Taylor; Steven H. Belle; Adrian M. Di Bisceglie; Rajeev Aurora; John E. Tavis

ABSTRACT Pegylated alpha interferon and ribavirin therapy for hepatitis C virus (HCV) genotype 1 infection fails for half of Caucasian American patients (CA) and more often for African Americans (AA). The reasons for these low response rates are unknown. HCV is highly genetically variable, but it is unknown how this variability affects response to therapy. To assess effects of viral diversity on response to therapy, the complete pretreatment genotype 1 HCV open reading frame was sequenced using samples from 94 participants in the Virahep-C study. Sequences from patients with >3.5 log declines in viral RNA levels by day 28 (marked responders) were more variable than those from patients with declines of <1.4 log (poor responders) in NS3 and NS5A for genotype 1a and in core and NS3 for genotype 1b. These correlations remained when all T-cell epitopes were excluded, indicating that these differences were not due to differential immune selection. When the sequences were compared by race of the patients, higher diversity in CA patients was found in E2 and NS2 but only for genotype 1b. Core, NS3, and NS5A can block the action of alpha interferon in vitro; hence, these genetic patterns are consistent with multiple amino acid variations independently impairing the function of HCV proteins that counteract interferon responses in humans, resulting in HCV strains with variable sensitivity to therapy. No evidence was found for novel HCV strains in the AA population, implying that AA patients may be infected with a higher proportion of the same resistant strains that are found in CA patients.


Journal of Clinical Investigation | 2008

Genome-wide hepatitis C virus amino acid covariance networks can predict response to antiviral therapy in humans

Rajeev Aurora; Maureen J. Donlin; Nathan A. Cannon; John E. Tavis

Hepatitis C virus (HCV) is a common RNA virus that causes hepatitis and liver cancer. Infection is treated with IFN-alpha and ribavirin, but this expensive and physically demanding therapy fails in half of patients. The genomic sequences of independent HCV isolates differ by approximately 10%, but the effects of this variation on the response to therapy are unknown. To address this question, we analyzed amino acid covariance within the full viral coding region of pretherapy HCV sequences from 94 participants in the Viral Resistance to Antiviral Therapy of Chronic Hepatitis C (Virahep-C) clinical study. Covarying positions were common and linked together into networks that differed by response to therapy. There were 3-fold more hydrophobic amino acid pairs in HCV from nonresponding patients, and these hydrophobic interactions were predicted to contribute to failure of therapy by stabilizing viral protein complexes. Using our analysis to detect patterns within the networks, we could predict the outcome of therapy with greater than 95% coverage and 100% accuracy, raising the possibility of a prognostic test to reduce therapeutic failures. Furthermore, the hub positions in the networks are attractive antiviral targets because of their genetic linkage with many other positions that we predict would suppress evolution of resistant variants. Finally, covariance network analysis could be applicable to any virus with sufficient genetic variation, including most human RNA viruses.


Plant Physiology | 2008

Integration of Carbon and Nitrogen Metabolism with Energy Production Is Crucial to Light Acclimation in the Cyanobacterium Synechocystis

Abhay K. Singh; Thanura R. Elvitigala; Maitrayee Bhattacharyya-Pakrasi; Rajeev Aurora; Bijoy K. Ghosh; Himadri B. Pakrasi

Light drives the production of chemical energy and reducing equivalents in photosynthetic organisms required for the assimilation of essential nutrients. This process also generates strong oxidants and reductants that can be damaging to the cellular processes, especially during absorption of excess excitation energy. Cyanobacteria, like other oxygenic photosynthetic organisms, respond to increases in the excitation energy, such as during exposure of cells to high light (HL) by the reduction of antenna size and photosystem content. However, the mechanism of how Synechocystis sp. PCC 6803, a cyanobacterium, maintains redox homeostasis and coordinates various metabolic processes under HL stress remains poorly understood. In this study, we have utilized time series transcriptome data to elucidate the global responses of Synechocystis to HL. Identification of differentially regulated genes involved in the regulation, protection, and maintenance of redox homeostasis has offered important insights into the optimized response of Synechocystis to HL. Our results indicate a comprehensive integrated homeostatic interaction between energy production (photosynthesis) and energy consumption (assimilation of carbon and nitrogen). In addition, measurements of physiological parameters under different growth conditions showed that integration between the two processes is not a consequence of limitations in the external carbon and nitrogen levels available to the cells. We have also discovered the existence of a novel glycosylation pathway, to date known as an important nutrient sensor only in eukaryotes. Up-regulation of a gene encoding the rate-limiting enzyme in the hexosamine pathway suggests a regulatory role for protein glycosylation in Synechocystis under HL.


Archives of Otolaryngology-head & Neck Surgery | 2013

Contrasting the Microbiomes From Healthy Volunteers and Patients With Chronic Rhinosinusitis

Rajeev Aurora; Dhrubamitra Chatterjee; Joshua Hentzleman; Gaurav Prasad; Raj Sindwani; Thomas Sanford

IMPORTANCE Chronic rhinosinusitis (CRS) is the persistent inflammation of the sinus and nasal passages lasting over 3 months. The etiology of CRS is not well understood. OBJECTIVE To obtain insights into the disease process, we contrasted the microbiome and immune response from patients with CRS and healthy controls. DESIGN, SETTING, AND PARTICIPANTS A case vs control design was used. Samples were collected in the operating room in an institutional hospital or clinic. Thirty patients with CRS and 12 healthy controls undergoing surgery were recruited. MAIN OUTCOMES AND MEASURES The microbiome was analyzed by deep sequencing of the bacterial 16S and fungal 18S ribosomal RNA genes. Immune response was measured by quantification of 30 different cytokines by multiplexed enzyme-linked immunosorbent assay, and immune cells in the lavage were identified by flow cytometry. The immune response of peripheral blood leukocytes to the lavage microbiota was assessed by interleukin (IL)-5 enzyme-linked immunospot assay. RESULTS While quantitative increase in most bacterial and fungal species was observed in patients with CRS relative to controls, the microbiomes of patients with CRS were qualitatively similar to the controls. Because these results indicated that bacteria and fungi are not triggering CRS, we undertook a more detailed characterization of the immune response. Patients with CRS had increased levels of the following cytokines: IL-4, IL-5, IL-8, and IL-13, along with increased levels of eosinophils and basophils in the lavage. Importantly, peripheral blood leukocytes isolated from patients with CRS responded to control lavage samples (ie, to commensals) to produce IL-5. In contrast, the same lavage sample evoked no IL-5 production in leukocytes from healthy controls. CONCLUSIONS AND RELEVANCE These findings support the theory that in some cases CRS results from an immune hyperresponsiveness to commensal organisms.


PLOS Pathogens | 2013

The Hepatitis B Virus Ribonuclease H Is Sensitive to Inhibitors of the Human Immunodeficiency Virus Ribonuclease H and Integrase Enzymes

John E. Tavis; Xiaohong Cheng; Yuan Hu; Michael Totten; Feng Cao; Eleftherios Michailidis; Rajeev Aurora; Marvin J. Meyers; E. Jon Jacobsen; Michael A. Parniak; Stefan G. Sarafianos

Nucleos(t)ide analog therapy blocks DNA synthesis by the hepatitis B virus (HBV) reverse transcriptase and can control the infection, but treatment is life-long and has high costs and unpredictable long-term side effects. The profound suppression of HBV by the nucleos(t)ide analogs and their ability to cure some patients indicates that they can push HBV to the brink of extinction. Consequently, more patients could be cured by suppressing HBV replication further using a new drug in combination with the nucleos(t)ide analogs. The HBV ribonuclease H (RNAseH) is a logical drug target because it is the second of only two viral enzymes that are essential for viral replication, but it has not been exploited, primarily because it is very difficult to produce active enzyme. To address this difficulty, we expressed HBV genotype D and H RNAseHs in E. coli and enriched the enzymes by nickel-affinity chromatography. HBV RNAseH activity in the enriched lysates was characterized in preparation for drug screening. Twenty-one candidate HBV RNAseH inhibitors were identified using chemical structure-activity analyses based on inhibitors of the HIV RNAseH and integrase. Twelve anti-RNAseH and anti-integrase compounds inhibited the HBV RNAseH at 10 µM, the best compounds had low micromolar IC50 values against the RNAseH, and one compound inhibited HBV replication in tissue culture at 10 µM. Recombinant HBV genotype D RNAseH was more sensitive to inhibition than genotype H. This study demonstrates that recombinant HBV RNAseH suitable for low-throughput antiviral drug screening has been produced. The high percentage of compounds developed against the HIV RNAseH and integrase that were active against the HBV RNAseH indicates that the extensive drug design efforts against these HIV enzymes can guide anti-HBV RNAseH drug discovery. Finally, differential inhibition of HBV genotype D and H RNAseHs indicates that viral genetic variability will be a factor during drug development.


Journal of Immunology | 2009

Cross-Presentation by Osteoclasts Induces FoxP3 in CD8+ T Cells

Jennifer R. Kiesel; Zachary S. Buchwald; Rajeev Aurora

Bone is remodeled throughout the life of an animal by the action of osteoclasts, which resorb bone, and osteoblasts, which form new bone. It has recently been recognized that T cells regulate osteoclasts by secreting a number of cytokines including type I and II IFNs and receptor activator of NF-κB ligand. In this study, we show that osteoclasts produce chemokines that recruit CD8+ T cells. Using transgenic OT-I mice, we found that in the presence of OVA, osteoclasts induced the secretion of IL-2, IL-6, and IFN-γ as well as the proliferation of CD8+ T cells. CD8+ T cells activated by osteoclasts expressed FoxP3, CTLA4, and receptor activator of NF-κB ligand. The FoxP3+CD8+ T cells were anergic and suppressed dendritic cell priming of naive responder CD8+ T cells. These results provide two novel observations for osteoimmunology: first, we demonstrate that osteoclasts can cross-present Ags to CD8+ T cells. Second, these data show that osteoclasts are not only regulated by T cells, but they also can regulate T cells forming a feedback control loop. The induction of FoxP3 in T cells through a MHC class I-dependent manner provides a new mechanism to peripherally produce a regulatory T cell. These observations open a new avenue of investigation for the pathogenesis of autoimmune-mediated inflammatory bone diseases.


Plant Physiology | 2009

A systems level analysis of the effects of light quality on the metabolism of a cyanobacterium

Abhay K. Singh; Maitrayee Bhattacharyya-Pakrasi; Thanura R. Elvitigala; Bijoy K. Ghosh; Rajeev Aurora; Himadri B. Pakrasi

Photosynthetic organisms experience changes in light quantity and light quality in their natural habitat. In response to changes in light quality, these organisms redistribute excitation energy and adjust photosystem stoichiometry to maximize the utilization of available light energy. However, the response of other cellular processes to changes in light quality is mostly unknown. Here, we report a systematic investigation into the adaptation of cellular processes in Synechocystis species PCC 6803 to light that preferentially excites either photosystem II or photosystem I. We find that preferential excitation of photosystem II and photosystem I induces massive reprogramming of the Synechocystis transcriptome. The rewiring of cellular processes begins as soon as Synechocystis senses the imbalance in the excitation of reaction centers. We find that Synechocystis utilizes the cyclic photosynthetic electron transport chain for ATP generation and a major part of the respiratory pathway to generate reducing equivalents and carbon skeletons during preferential excitation of photosystem I. In contrast, cytochrome c oxidase and photosystem I act as terminal components of the photosynthetic electron transport chain to produce sufficient ATP and limited amounts of NADPH and reduced ferredoxin during preferential excitation of photosystem II. To overcome the shortage of NADPH and reduced ferredoxin, Synechocystis preferentially activates transporters and acquisition pathways to assimilate ammonia, urea, and arginine over nitrate as a nitrogen source. This study provides a systematic analysis of cellular processes in cyanobacteria in response to preferential excitation and shows that the cyanobacterial cell undergoes significant adjustment of cellular processes, many of which were previously unknown.


PLOS ONE | 2008

Hepatitis C virus diversity and evolution in the full open-reading frame during antiviral therapy.

Nathan A. Cannon; Maureen J. Donlin; Xiaofeng Fan; Rajeev Aurora; John E. Tavis

Background Pegylated interferon plus ribavirin therapy for hepatitis C virus (HCV) fails in approximately half of genotype 1 patients. Treatment failure occurs either by nonresponse (minimal declines in viral titer) or relapse (robust initial responses followed by rebounds of viral titers during or after therapy). HCV is highly variable genetically. To determine if viral genetic differences contribute to the difference between response and relapse, we examined the inter-patient genetic diversity and mutation pattern in the full open reading frame HCV genotype 1a consensus sequences. Methodology/Principal Findings Pre- and post-therapy sequences were analyzed for 10 nonresponders and 10 relapsers from the Virahep-C clinical study. Pre-therapy interpatient diversity among the relapsers was higher than in the nonresponders in the viral NS2 and NS3 genes, and post-therapy diversity was higher in the relapsers for most of HCVs ten genes. Pre-therapy diversity among the relapsers was intermediate between that of the non-responders and responders to therapy. The average mutation rate was just 0.9% at the amino acid level and similar numbers of mutations occurred in the nonresponder and relapser sequences, but the mutations in NS2 of relapsers were less conservative than in nonresponders. Finally, the number and distribution of regions under positive selection was similar between the two groups, although the nonresponders had more foci of positive selection in E2. Conclusions/Significance The HCV sequences were unexpectedly stable during failed antiviral therapy, both nonresponder and relapser sequences were under selective pressure during therapy, and variation in NS2 may have contributed to the difference in response between the nonresponder and relapser groups. These data support a role for viral genetic variability in determining the outcome of anti-HCV therapy, with those sequences that are more distant from an optimal sequence being less able to resist the pressures of interferon-based therapy. Trial registration ClinicalTrials.gov NCT00038974

Collaboration


Dive into the Rajeev Aurora's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Himadri B. Pakrasi

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge