Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Eksterowicz is active.

Publication


Featured researches published by John Eksterowicz.


Journal of Medicinal Chemistry | 2014

Discovery of AMG 232, a Potent, Selective, and Orally Bioavailable MDM2–p53 Inhibitor in Clinical Development

Daqing Sun; Zhihong Li; Yosup Rew; Michael W. Gribble; Michael D. Bartberger; Hilary P. Beck; Jude Canon; Ada Chen; Xiaoqi Chen; David Chow; Jeffrey Deignan; Jason Duquette; John Eksterowicz; Benjamin Fisher; Brian M. Fox; Jiasheng Fu; Ana Z. Gonzalez; Felix Gonzalez-Lopez de Turiso; Jonathan B. Houze; Xin Huang; Min Jiang; Lixia Jin; Frank Kayser; Jiwen Liu; Mei-Chu Lo; Alexander M. Long; Brian Lucas; Lawrence R. McGee; Joel McIntosh; Jeff Mihalic

We recently reported the discovery of AM-8553 (1), a potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Continued research investigation of the N-alkyl substituent of this series, focused in particular on a previously underutilized interaction in a shallow cleft on the MDM2 surface, led to the discovery of a one-carbon tethered sulfone which gave rise to substantial improvements in biochemical and cellular potency. Further investigation produced AMG 232 (2), which is currently being evaluated in human clinical trials for the treatment of cancer. Compound 2 is an extremely potent MDM2 inhibitor (SPR KD = 0.045 nM, SJSA-1 EdU IC50 = 9.1 nM), with remarkable pharmacokinetic properties and in vivo antitumor activity in the SJSA-1 osteosarcoma xenograft model (ED50 = 9.1 mg/kg).


Journal of Chemical Information and Modeling | 2007

Significance Analysis and Multiple Pharmacophore Models for Differentiating P-Glycoprotein Substrates

Wuxiong Li; Leping Li; John Eksterowicz; Xuefeng B. Ling; Mario G. Cardozo

P-glycoprotein (Pgp) mediated drug efflux affects the absorption, distribution, and clearance of a broad structural variety of drugs. Early assessment of the potential of compounds to interact with Pgp can aid in the selection and optimization of drug candidates. To differentiate nonsubstrates from substrates of Pgp, a robust predictive pharmacophore model was targeted in a supervised analysis of three-dimensional (3D) pharmacophores from 163 published compounds. A comprehensive set of pharmacophores has been generated from conformers of whole molecules of both substrates and nonsubstrates of P-glycoprotein. Four-point 3D pharmacophores were employed to increase the amount of shape information and resolution, including the ability to distinguish chirality. A novel algorithm of the pharmacophore-specific t-statistic was applied to the actual structure-activity data and 400 sets of artificial data (sampled by decorrelating the structure and Pgp efflux activity). The optimal size of the significant pharmacophore set was determined through this analysis. A simple classification tree using nine distinct pharmacophores was constructed to distinguish nonsubstrates from substrates of Pgp. An overall accuracy of 87.7% was achieved for the training set and 87.6% for the external independent test set. Furthermore, each of nine pharmacophores can be independently utilized as an accurate marker for potential Pgp substrates.


Journal of Medicinal Chemistry | 2014

Selective and potent morpholinone inhibitors of the MDM2-p53 protein-protein interaction.

Ana Z. Gonzalez; John Eksterowicz; Michael D. Bartberger; Hilary P. Beck; Jude Canon; Ada Chen; David Chow; Jason Duquette; Brian M. Fox; Jiasheng Fu; Xin Huang; Jonathan B. Houze; Lixia Jin; Yihong Li; Zhihong Li; Yun Ling; Mei-Chu Lo; Alexander M. Long; Lawrence R. McGee; Joel McIntosh; Dustin L. McMinn; Jonathan D. Oliner; Tao Osgood; Yosup Rew; Anne Y. Saiki; Paul Shaffer; Sarah Wortman; Peter Yakowec; Xuelei Yan; Qiuping Ye

We previously reported the discovery of AMG 232, a highly potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Our continued search for potent and diverse analogues led to the discovery of novel morpholinone MDM2 inhibitors. This change to a morpholinone core has a significant impact on both potency and metabolic stability compared to the piperidinone series. Within this morpholinone series, AM-8735 emerged as an inhibitor with remarkable biochemical potency (HTRF IC50 = 0.4 nM) and cellular potency (SJSA-1 EdU IC50 = 25 nM), as well as pharmacokinetic properties. Compound 4 also shows excellent antitumor activity in the SJSA-1 osteosarcoma xenograft model with an ED50 of 41 mg/kg. Lead optimization toward the discovery of this inhibitor as well as key differences between the morpholinone and the piperidinone series will be described herein.


Journal of Medicinal Chemistry | 2014

Novel Inhibitors of the MDM2-p53 Interaction Featuring Hydrogen Bond Acceptors as Carboxylic Acid Isosteres.

Ana Z. Gonzalez; Zhihong Li; Hilary P. Beck; Jude Canon; Ada Chen; David Chow; Jason Duquette; John Eksterowicz; Brian M. Fox; Jiasheng Fu; Xin Huang; Jonathan B. Houze; Lixia Jin; Yihong Li; Yun Ling; Mei-Chu Lo; Alexander M. Long; Lawrence R. McGee; Joel McIntosh; Jonathan D. Oliner; Tao Osgood; Yosup Rew; Anne Y. Saiki; Paul Shaffer; Sarah Wortman; Peter Yakowec; Xuelei Yan; Qiuping Ye; Dongyin Yu; Xiaoning Zhao

We previously reported the discovery of potent and selective morpholinone and piperidinone inhibitors of the MDM2-p53 interaction. These inhibitors have in common a carboxylic acid moiety that engages in an electrostatic interaction with MDM2-His96. Our continued search for potent and diverse inhibitors led to the discovery of novel replacements for these acids uncovering new interactions with the MDM2 protein. In particular, using pyridine or thiazole as isosteres of the carboxylic acid moiety resulted in very potent analogues. From these, AM-6761 (4) emerged as a potent inhibitor with remarkable biochemical (HTRF IC50 = 0.1 nM) and cellular potency (SJSA-1 EdU IC50 = 16 nM), as well as favorable pharmacokinetic properties. Compound 4 also shows excellent antitumor activity in the SJSA-1 osteosarcoma xenograft model with an ED50 of 11 mg/kg. Optimization efforts toward the discovery of these inhibitors as well as the new interactions observed with the MDM2 protein are described herein.


Molecular Cancer Therapeutics | 2015

The MDM2 Inhibitor AMG 232 Demonstrates Robust Antitumor Efficacy and Potentiates the Activity of p53-Inducing Cytotoxic Agents

Jude Canon; Tao Osgood; Steven H. Olson; Anne Y. Saiki; Rebecca Robertson; Dongyin Yu; John Eksterowicz; Qiuping Ye; Lixia Jin; Ada Chen; Jing Zhou; David Cordover; Stephen Kaufman; Richard Kendall; Jonathan D. Oliner; Angela Coxon; Robert Radinsky

p53 is a critical tumor suppressor and is the most frequently inactivated gene in human cancer. Inhibition of the interaction of p53 with its negative regulator MDM2 represents a promising clinical strategy to treat p53 wild-type tumors. AMG 232 is a potential best-in-class inhibitor of the MDM2–p53 interaction and is currently in clinical trials. We characterized the activity of AMG 232 and its effect on p53 signaling in several preclinical tumor models. AMG 232 binds the MDM2 protein with picomolar affinity and robustly induces p53 activity, leading to cell-cycle arrest and inhibition of tumor cell proliferation. AMG 232 treatment inhibited the in vivo growth of several tumor xenografts and led to complete and durable regression of MDM2-amplified SJSA-1 tumors via growth arrest and induction of apoptosis. Therapeutic combination studies of AMG 232 with chemotherapies that induce DNA damage and p53 activity resulted in significantly superior antitumor efficacy and regression, and markedly increased activation of p53 signaling in tumors. These preclinical data support the further evaluation of AMG 232 in clinical trials as both a monotherapy and in combination with standard-of-care cytotoxics. Mol Cancer Ther; 14(3); 649–58. ©2015 AACR.


Bioorganic & Medicinal Chemistry Letters | 2013

Inhibiting NF-κB-inducing kinase (NIK): Discovery, structure-based design, synthesis, structure–activity relationship, and co-crystal structures

Kexue Li; Lawrence R. McGee; Ben Fisher; Athena Sudom; Jinsong Liu; Steven M. Rubenstein; Mohmed K. Anwer; Timothy D. Cushing; Youngsook Shin; Merrill Ayres; Fei Lee; John Eksterowicz; Paul Faulder; Bohdan Waszkowycz; Olga Plotnikova; Ellyn Farrelly; Shou-Hua Xiao; Guoqing Chen; Zhulun Wang

The discovery, structure-based design, synthesis, and optimization of NIK inhibitors are described. Our work began with an HTS hit, imidazopyridinyl pyrimidinamine 1. We utilized homology modeling and conformational analysis to optimize the indole scaffold leading to the discovery of novel and potent conformationally constrained inhibitors such as compounds 25 and 28. Compounds 25 and 31 were co-crystallized with NIK kinase domain to provide structural insights.


Journal of Medicinal Chemistry | 2014

Discovery of AMG 925, a FLT3 and CDK4 Dual Kinase Inhibitor with Preferential Affinity for the Activated State of FLT3

Zhihong Li; Xianghong Wang; John Eksterowicz; Michael W. Gribble; Grace Q. Alba; Merrill Ayres; Timothy J. Carlson; Ada Chen; Xiaoqi Chen; Robert Cho; Richard V. Connors; Michael DeGraffenreid; Jeffrey Deignan; Jason Duquette; Pingchen Fan; Benjamin Fisher; Jiasheng Fu; Justin N. Huard; Jacob Kaizerman; Kathleen S. Keegan; Cong Li; Kexue Li; Yunxiao Li; Lingming Liang; Wen Liu; Sarah E. Lively; Mei-Chu Lo; Ji Ma; Dustin L. McMinn; Jeffrey T. Mihalic

We describe the structural optimization of a lead compound 1 that exhibits dual inhibitory activities against FLT3 and CDK4. A series of pyrido[4,3:4,5]pyrrolo[2,3-d]pyrimidine derivatives was synthesized, and SAR analysis, using cell-based assays, led to the discovery of 28 (AMG 925), a potent and orally bioavailable dual inhibitor of CDK4 and FLT3, including many FLT3 mutants reported to date. Compound 28 inhibits the proliferation of a panel of human tumor cell lines including Colo205 (Rb(+)) and U937 (FLT3(WT)) and induced cell death in MOLM13 (FLT3(ITD)) and even in MOLM13 (FLT3(ITD,xa0D835Y)), which exhibits resistance to a number of FLT3 inhibitors currently under clinical development. At well-tolerated doses, compound 28 leads to significant growth inhibition of MOLM13 xenografts in nude mice, and the activity correlates with inhibition of STAT5 and Rb phosphorylation.


Journal of Biological Chemistry | 2015

Structural and Functional Characterization of the JH2 Pseudokinase Domain of JAK Family Tyrosine Kinase 2 (TYK2)

Xiaoshan Min; Daniela Ungureanu; Sarah Sollid Maxwell; Henrik Hammarén; Steve Thibault; Ellin-Kristina Hillert; Merrill Ayres; Brad W. Greenfield; John Eksterowicz; Chris Gabel; Nigel Walker; Olli Silvennoinen; Zhulun Wang

Background: JAK JH2s (pseudokinase domains) mediate important regulatory functions; it is unclear whether TYK2 JH2 binds ATP and possesses enzymatic activity. Results: TYK2 JH2 binds ATP, but is catalytically inactive; ATP stabilizes JH2 and modulates TYK2 activity. Conclusion: ATP binding to JH2 is functionally important; the rigid activation loop probably hinders substrate phosphorylation. Significance: The TYK2 JH2 domain can be targeted with ATP-competitive compounds for therapeutics. JAK (Janus family of cytoplasmic tyrosine kinases) family tyrosine kinase 2 (TYK2) participates in signaling through cytokine receptors involved in immune responses and inflammation. JAKs are characterized by dual kinase domain: a tyrosine kinase domain (JH1) that is preceded by a pseudokinase domain (JH2). The majority of disease-associated mutations in JAKs map to JH2, demonstrating its central regulatory function. JH2s were considered catalytically inactive, but JAK2 JH2 was found to have low autoregulatory catalytic activity. Whether the other JAK JH2s share ATP binding and enzymatic activity has been unclear. Here we report the crystal structure of TYK2 JH2 in complex with adenosine 5′-O-(thiotriphosphate) (ATP-γS) and characterize its nucleotide binding by biochemical and biophysical methods. TYK2 JH2 did not show phosphotransfer activity, but it binds ATP and the nucleotide binding stabilizes the protein without inducing major conformational changes. Mutation of the JH2 ATP-binding pocket increased basal TYK2 phosphorylation and downstream signaling. The overall structural characteristics of TYK2 JH2 resemble JAK2 JH2, but distinct stabilizing molecular interactions around helix αAL in the activation loop provide a structural basis for differences in substrate access and catalytic activities among JAK family JH2s. The structural and biochemical data suggest that ATP binding is functionally important for both TYK2 and JAK2 JH2s, whereas the regulatory phosphorylation appears to be a unique property of JAK2. Finally, the co-crystal structure of TYK2 JH2 complexed with a small molecule inhibitor demonstrates that JH2 is accessible to ATP-competitive compounds, which offers novel approaches for targeting cytokine signaling as well as potential therapeutic applications.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery and optimization of arylsulfonyl 3-(pyridin-2-yloxy)anilines as novel GPR119 agonists.

Jian Zhang; An-Rong Li; Ming Yu; Yingcai Wang; Jiang Zhu; Frank Kayser; Julio C. Medina; Karen Siegler; Marion Conn; Bei Shan; Mark P. Grillo; John Eksterowicz; Peter Coward; Jiwen Liu

We describe the discovery of a series of arylsulfonyl 3-(pyridin-2-yloxy)anilines as GPR119 agonists derived from compound 1. Replacement of the three methyl groups in 1 with metabolically stable moieties led to the identification of compound 34, a potent and efficacious GPR119 agonist with improved pharmacokinetic (PK) properties.


Organic Letters | 2009

Facile synthesis of substituted 5-amino- and 3-amino-1,2,4-thiadiazoles from a common precursor.

Paul M. Wehn; Paul E. Harrington; John Eksterowicz

A novel approach to the synthesis of substituted 5-amino- and 3-amino-1,2,4-thiadiazoles beginning from a common precursor has been achieved. Derivatization by palladium-catalyzed Suzuki-Miyaura coupling enables the rapid preparation of analogs around this pharmaceutically relevant core. FMO calculations rationalize the observed chemoselectivity for coupling at chlorine.

Collaboration


Dive into the John Eksterowicz's collaboration.

Researchain Logo
Decentralizing Knowledge