Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhihong Li is active.

Publication


Featured researches published by Zhihong Li.


Nano Letters | 2013

Frequency-Multiplication High-Output Triboelectric Nanogenerator for Sustainably Powering Biomedical Microsystems

Xiao-Sheng Zhang; Mengdi Han; Renxin Wang; Fuyun Zhu; Zhihong Li; Wei Wang; Haixia Zhang

An attractive method to response the current energy crisis and produce sustainable nonpolluting power source is harvesting energy from our living environment. However, the energy in our living environment always exists in low-frequency form, which is very difficult to be utilized directly. Here, we demonstrated a novel sandwich-shape triboelectric nanogenerator to convert low-frequency mechanical energy to electric energy with double frequency. An aluminum film was placed between two polydimethylsiloxane (PDMS) membranes to realize frequency multiplication by twice contact electrifications within one cycle of external force. The working mechanism was studied by finite element simulation. Additionally, the well-designed micro/nano dual-scale structures (i.e., pyramids and V-shape grooves) fabricated atop PDMS surface was employed to enhance the device performance. The output peak voltage, current density, and energy volume density achieved 465 V, 13.4 μA/cm(2), and 53.4 mW/cm(3), respectively. This novel nanogenerator was systematically investigated and also demonstrated as a reliable power source, which can be directly used to not only lighten five commercial light-emitting diodes (LEDs) but also drive an implantable 3-D microelectrode array for neural prosthesis without any energy storage unit or rectification circuit. This is the first demonstration of the nanogenerator for directly driving biomedical microsystems, which extends the application fields of the nanogenerator and drives it closer to practical applications.


Analytical Chemistry | 2011

A Laminar Flow Electroporation System for Efficient DNA and siRNA Delivery

Zewen Wei; Deyao Zhao; Xueming Li; Mengxi Wu; Wei Wang; Huang Huang; Xiaoxia Wang; Quan Du; Zicai Liang; Zhihong Li

By introducing a hydrodynamic mechanism into a microfluidics-based electroporation system, we developed a novel laminar flow electroporation system with high performance. The laminar buffer flow implemented in the system separated the cell suspension flow from the electrodes, thereby excluding many unfavorable effects due to electrode reaction during electroporation, such as hydrolysis, bubble formation, pH change, and heating. Compared to conventional microfluidic electroporation systems, these improvements significantly enhanced transfection efficiency and cell viability. Furthermore, successful electrotransfection of plasmid DNA and, more importantly, synthetic siRNA, was demonstrated in several hard-to-transfect cell types using this system.


Nanotechnology | 2013

Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis.

Wei Ouyang; Wei Wang; Haixia Zhang; Wengang Wu; Zhihong Li

The great advances in nanotechnology call for advances in miniaturized power sources for micro/nano-scale systems. Nanofluidic channels have received great attention as promising high-power-density substitutes for ion exchange membranes for use in energy harvesting from ambient ionic concentration gradient, namely reverse electrodialysis. This paper proposes the nanofluidic crystal (NFC), of packed nanoparticles in micro-meter-sized confined space, as a facile, high-efficiency and high-power-density scaling-up scheme for energy harvesting by nanofluidic reverse electrodialysis (NRED). Obtained from the self-assembly of nanoparticles in a micropore, the NFC forms an ion-selective network with enormous nanochannels due to electrical double-layer overlap in the nanoparticle interstices. As a proof-of-concept demonstration, a maximum efficiency of 42.3 ± 1.84%, a maximum power density of 2.82 ± 0.22 W m(-2), and a maximum output power of 1.17 ± 0.09 nW/unit (nearly three orders of magnitude of amplification compared to other NREDs) were achieved in our prototype cell, which was prepared within 30 min. The current NFC-based prototype cell can be parallelized and cascaded to achieve the desired output power and open circuit voltage. This NFC-based scaling-up scheme for energy harvesting based on NRED is promising for the building of self-powered micro/nano-scale systems.


Analytical Chemistry | 2014

Flow-through cell electroporation microchip integrating dielectrophoretic viable cell sorting.

Zewen Wei; Xueming Li; Deyao Zhao; Hao Yan; Zhiyuan Hu; Zicai Liang; Zhihong Li

Microfluidics based continuous cell electroporation is an appealing approach for high-throughput cell transfection, but cell viability of existing methods is usually compromised by adverse electrical or hydrodynamic effects. Here we present the validation of a flow-through cell electroporation microchip, in which dielectrophoretic force was employed to sort viable cells. By integrating parallel electroporation electrodes and dielectrophoresis sorting electrodes together in a simple straight microfluidic channel, sufficient electrical pulses were applied for efficient electroporation, and a proper sinusoidal electrical field was subsequently utilized to exclude damaged cells by dielectrophoresis. Thus, the difficulties for seeking the fine balance between electrotransfection efficiency and cell viability were steered clear. After careful investigation and optimization of the DEP behaviors of electroporated cells, efficient electrotransfection of plasmid DNA was demonstrated in vulnerable neuron cells and several hard-to-transfect primary cell types with excellent cell viability. This microchip constitutes a novel way of continuous cell transfection to significantly improve the cell viability of existing methodologies.


Scientific Reports | 2016

Electroporation on microchips: the harmful effects of pH changes and scaling down

Yang Li; Mengxi Wu; Deyao Zhao; Zewen Wei; Wenfeng Zhong; Xiaoxia Wang; Zicai Liang; Zhihong Li

Electroporation has been widely used in delivering foreign biomolecules into cells, but there is still much room for improvement, such as cell viability and integrity. In this manuscript, we investigate the distribution and the toxicity of pH changes during electroporation, which significantly decreases cell viability. A localized pH gradient forms between anode and cathode leading to a localized distribution of cell death near the electrodes, especially cathodes. The toxicity of hydroxyl ions is severe and acute due to their effect in the decomposition of phospholipid bilayer membrane. On the other hand, the electric field used for electroporation aggravates the toxicity of hydroxyl because the electropermeabilization of cell membrane makes bilayer structure more loosen and vulnerable. We also investigate the side effects during scaling down the size of electrodes in electroporation microchips. Higher percentage of cells is damaged when the size of electrodes is smaller. At last, we propose an effective strategy to constrain the change of pH by modifying the composition of electroporation buffer. The modified buffer decreases the changes of pH, thus enables high cell viability even when the electric pulse duration exceeds several milliseconds. This ability has potential advantage in some applications that require long-time electric pulse stimulation.


Scientific Reports | 2016

A Flow-Through Cell Electroporation Device for Rapidly and Efficiently Transfecting Massive Amounts of Cells in vitro and ex vivo

Deyao Zhao; Dong Huang; Yang Li; Mengxi Wu; Wenfeng Zhong; Qiang Cheng; Xiaoxia Wang; Yidi Wu; Xiao Zhou; Zewen Wei; Zhihong Li; Zicai Liang

Continuous cell electroporation is an appealing non-viral approach for genetically transfecting a large number of cells. Yet the traditional macro-scale devices suffer from the unsatisfactory transfection efficiency and/or cell viability due to their high voltage, while the emerging microfluidic electroporation devices is still limited by their low cell processing speed. Here we present a flow-through cell electroporation device integrating large-sized flow tube and small-spaced distributed needle electrode array. Relatively large flow tube enables high flow rate, simple flow characterization and low shear force, while well-organized needle array electrodes produce an even-distributed electric field with low voltage. Thus the difficulties for seeking the fine balance between high flow rate and low electroporation voltage were steered clear. Efficient in vitro electrotransfection of plasmid DNA was demonstrated in several hard-to-transfect cell lines. Furthermore, we also explored ex vivo electroporated mouse erythrocyte as the carrier of RNA. The strong ability of RNA loading and short exposure time of freshly isolated cells jointly ensured a high yield of valid carrier erythrocytes, which further successfully delivered RNA into targeted tissue. Both in vitro and ex vivo electrotransfection could be accomplished at high cell processing speed (20 million cells per minute) which remarkably outperforms previous devices.


Scientific Reports | 2015

A Pliable Electroporation Patch (ep-Patch) for Efficient Delivery of Nucleic Acid Molecules into Animal Tissues with Irregular Surface Shapes

Zewen Wei; Yuanyu Huang; Deyao Zhao; Zhiyuan Hu; Zhihong Li; Zicai Liang

Delivery of nucleic acids into animal tissues by electroporation is an appealing approach for various types of gene therapy, but efficiency of existing methodsis not satisfactory. Here we present the validation of novel electroporation patch (ep-Patch) for efficient delivery of DNA and siRNA into mouse tissues. Using micromachining technology, closely spaced gold electrodes were made on the pliable parylene substrate to form a patch-like electroporation metrics. It enabled large coverage of the target tissues and close surface contact between the tissues and electrodes, thus providing a uniform electric field to deliver nucleic acids into tissues, even beneath intact skin. Using this ep-Patch for efficiently delivery of both DNA and siRNA, non-invasive electroporation of healthy mouse muscle tissue was successfully achieved. Delivery of these nucleic acids was performed to intact tumors with satisfactory results. Silencing of tumor genes using the ep-Patch was also demonstrated on mice. This pliable electroporation patch method constitutes a novel way of in vivo delivery of siRNA and DNA to certain tissues or organs to circumvent the disadvantages of existing methodologies for in vivo delivery of nucleic acid molecules.


Scientific Reports | 2013

High-density distributed electrode network, a multi-functional electroporation method for delivery of molecules of different sizes

Mengxi Wu; Deyao Zhao; Wenfeng Zhong; Hao Yan; Xiaoxia Wang; Zicai Liang; Zhihong Li

We present a multi-functional electroporation method for delivery of biomolecule utilizing a high-density distributed electrode network (HDEN) under tri-phase electric stimulation. The HDEN device, with which drastic pH change during the electroporation was avoided,was demonstrated to be highly effective for transfection of not only DNA plasmids and small interfering RNAs (siRNA), but also a small molecular anti-cancer drug, into cells in adjustable volumes of cell suspension. The method constitutes a very flexible electroporation approach in a wide range of in vitro or ex vivo scenarios in various tubes, standard multi-well plates as well as flow chambers.


Analytical Chemistry | 2013

Method for Electric Parametric Characterization and Optimization of Electroporation on a Chip

Mengxi Wu; Deyao Zhao; Zewen Wei; Wenfeng Zhong; Hao Yan; Xiaoxia Wang; Zicai Liang; Zhihong Li

We have developed a rapid method to optimize the electric parameters of cell electroporation. In our design, a pair of ring-dot formatted electrodes was used to generate a radial distribution of electric field from the center to the periphery. Varied electric field intensity was acquired in different annulus when an electric pulse was applied. Cells were cultured on the microchips for adherent cell electroporation and in situ observation. The electroporation parameters of electric field intensity were explored and evaluated in terms of cell viability and transfection efficiency. The optimization was performed in consideration of both cell viability, which was investigated to decrease as electric field increases, and the transfection rate, which normally increases at stronger electric field. The electroporation characteristics HEK-293A and Hela cells were investigated, and the optimum parameters were obtained. Verified by a commercial electroporation system as well as self-made microchips endowed the optimization with wider meaning. At last, as applications, we acquired the optimal electroporation pulse intensity of Neuro-2A cells and a type of primary cell (human umbilical vein endothelial cell, HUVEC) by one time electroporation using the proposed method.


nano/micro engineered and molecular systems | 2009

The method of prevent footing effect in making SOI micro-mechanical structure

Xu Mao; Zhenchuan Yang; Zhihong Li; Guizhen Yan

A novel method to apply thin metal film for preventing footing effect in making micro-mechanical structure on SOI wafer is presented. The handle wafer of the SOI wafer was etched to form cavity by KOH solution, and followed by removing the buried oxide from backside. Then a thin aluminum film was sputtered in the cavity to prevent footing effect. The experimental results showed that the SOI micro-mechanical structure was well protected from footing effect. We applied this method to make the SOI micro-accelerometer, and the linearity, sensitivity, resolution and bandwidth of the SOI micro-accelerometer were measured respectively. The performances of the fabricated SOI micro-accelerometer indicated that the method can improve the fabrication capability of SOI process.

Collaboration


Dive into the Zhihong Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge