Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John F. Bowyer is active.

Publication


Featured researches published by John F. Bowyer.


Brain Research | 1994

Low environmental temperatures or pharmacologic agents that produce hypothermia decrease methamphetamine neurotoxicity in mice

Syed F. Ali; Glenn D. Newport; R.Robert Holson; William Slikker; John F. Bowyer

Recently we have reported that methamphetamine (METH) neurotoxicity in rats depends on the environmental temperature. Here, we evaluate whether a cold environment (4 degrees C) or drugs which chloride and glutamate ion channel function block METH neurotoxicity in mice. Adult male CD mice received METH i.p. (4 x 10 mg/kg METH at 23 degrees C along with saline. 2.5 mg/kg (+)-MK-801, 40 mg/kg phenobarbital or 2.5 mg/kg diazepam and either 4 x 10 or 4 x 20 mg/kg METH at 4 degrees C). Multiple injections of METH (4 x 10 mg/kg i.p.) at room temperature (23 degrees C) produced a significant depletion of dopamine (DA) in striatum at 24, 72 h, 1 and 2 weeks. Three days post 4 x 10 mg/kg METH at 23 degrees C, an 80% decrease in striatal dopamine (DA) occurred while the same dose at 4 degrees C produced only a 20% DA decrease, and 4 x 20 mg/kg METH at 4 degrees C produced a 54% DA decrease. At 23 degrees C (+)MK-801 completely blocked while phenobarbital (40% decrease) and diazepam (65% decrease) partially blocked decreases in striatal DA produced by 4 x 10 mg/kg METH. Decreases in DOPAC and HVA were similar to the decreases in DA after METH and antagonists. Multiple injections of METH (4 x 10 mg/kg, i.p.) at room temperature also produced a significant depletion of serotonin (5-HT) in striatum at 24, 72 h, 1 and 2 weeks. This depletion of 5-HT at room temperature was blocked either by changing the environmental temperature to 4 degrees C, or by pretreatment with MK-801, diazepam and phenobarbital.(ABSTRACT TRUNCATED AT 250 WORDS)


Brain Research | 1997

Methamphetamine exposure can produce neuronal degeneration in mouse hippocampal remnants

Larry Schmued; John F. Bowyer

Neuronal cell death in hippocampal remnants was seen after methamphetamine (METH) exposure. Two techniques (Fluoro-Jade labeling and argyrophylia) showed that neuronal degeneration occurred in the indusium griseum, tenia tecta and fasciola cinerea within 5 days post-METH exposure in 70% of the mice. Neurodegeneration also occasionally occurred in the piriform cortex, hippocampus and frontal/parietal cortex. This cell death, unlike striatal neurotoxicity, was not dependent on magnitude of hyperthermia occurring but did correlate with behavioral seizure activity during METH exposure. Excitotoxic mechanisms may be underlying the neuronal degeneration since co-administration of phenobarbital blocked cell death.


Pharmacology, Biochemistry and Behavior | 1993

Effects of a cold environment or age on methamphetamine-induced dopamine release in the caudate putamen of female rats

John F. Bowyer; Bobby Gough; William Slikker; George W. Lipe; Glenn D. Newport; R.Robert Holson

Extracellular levels of dopamine (DA) and metabolites as well as serotonin [5-hydroxytryptamine (5-HT)] and 5-hydroxyindoleacetic acid (5-HIAA) were determined in the caudate putamen (CPU) of either 6- or 12-month-old female rats using microdialysis and high-performance liquid chromatography with electrochemical detection (HPLC-ED) before, during, and after four consecutive injections (given at 2-h intervals) of methamphetamine (METH). In 6-month-old rats administered 4 x 5 mg/kg METH at an environmental temperature (ET) of 23 degrees C, peak extracellular DA levels (between 50 and 150 rho g/10 microliters) were attained 30-45 min after each dose of METH while dihydroxyphenylacetic acid (DOPAC) decreased steadily after the first doses of METH until it reached a plateau at 50% of control (550-700 pg/10 microliters) levels. Increases in 5-HT levels during METH administrations paralleled DA increases while 5-HIAA decreases paralleled DOPAC decreases. The total CPU DA and 5-HT content of these rats was about 65% of control at 3 days post-METH. Reducing the ET to 4 degrees C during dosing decreased the peak and average DA levels attained during the 4 x 5 mg/kg METH administration to about 50% of that observed at a 23 degrees C ET. Increasing the dose to 4 x 10 mg/kg METH (4 degrees C ET) increased peak and average CPU DA levels to 200% that observed during 4 x 5 mg/kg METH at a 23 degrees C ET. However, no significant decreases in total CPU DA content of any rats dosed with METH at a 4 degrees C ET were observed 3 days post-METH. In 12-month-old rats dosed with 4 x 5 mg/kg METH (23 degrees C ET), the peak and average extracellular DA levels were only 30-60% that of 6-month-old rats. However, the CPU DA content of older rats was significantly decreased both 3 (30% control) and 14 (60% control) days post-METH. In summary, METH toxicity may not be predicted solely by the extracellular levels of DA attained during METH administration; age and ET also greatly influence METH neurotoxicity.


Brain Research | 1998

Neuronal degeneration in rat forebrain resulting from D-amphetamine-induced convulsions is dependent on seizure severity and age.

John F. Bowyer; Steven L. Peterson; Robert L. Rountree; John Tor-Agbidye; Guang Jian Wang

Neuronal damage and degeneration in the rat forebrain was characterized by B4 isolectin and Fluoro-Jade labeling techniques after 4 doses of 15 mg/kg amphetamine i.p. in 70- and 180-day-old Sprague-Dawley rats. In amphetamine-dosed rats some seizure activity occurred in all rats exhibiting pronounced hyperthermia but the degree of seizure activity varied greatly between individual rats. Over 90% of the rats in both age groups that showed behavioral signs of limbic seizures had somatic degeneration in the taenia tecta within 3 days of amphetamine exposure. Degenerating small star-shaped cells were seen in the septum and hippocampus in 70-day-old rats having extensive seizure activity. Although somatic degeneration only sporadically occurred in the piriform cortex of the younger rats, extensive B4 isolectin binding to activated microglia was observed in this area. In older rats prominent somatic degeneration was seen in the piriform cortex and orbital and insular areas of the frontal cortex of rats having seizures. Damage to the basal ganglia and related areas, including the thalamus, parietal cortex and dorsal medial striatum, occurred in rats with pronounced hyperthermia but only correlated with seizures in older rats. In the more severe cases of thalamic damage the highest density of neurodegeneration was localized perivascularly. Thus, amphetamine can produce notable damage to the limbic system when seizures occur and to the basal ganglia and related areas when hyperthermia occurs but the neurotoxicity profiles in these areas are age-dependent and not produced solely by hyperthermia. Further studies to determine whether neuronal damage is the result of or the cause of amphetamine-induced seizures are necessary.


Brain Research | 1995

Nitric oxide regulation of methamphetamine-induced dopamine release in caudate/putamen

John F. Bowyer; Peter Clausing; Bobby Gough; William Slikker; R.Robert Holson

A possible role for NO modulation of dopamine (DA) release in the caudate/putamen (CPU) during methamphetamine (METH) exposure was investigated using in vivo microdialysis in rats. Inclusion of the nitric oxide synthase (NOS) inhibitors NG-nitro-L-arginine (NOARG), NG-nitro-L-arginine methyl ester (L-NAME) or D-NAME (less potent inhibitor) in the microdialysis buffer prior to METH minimally affected basal levels of DA, DOPAC or HVA in CPU microdialysate. However, L-NAME and NOARG produced concentration-dependent decreases of up to 64% (100 microM) in CPU DA levels in microdialysate during exposure to four doses of METH (5 mg/kg i.p./2 h), with lesser effects on DOPAC or HVA. Reversal of the NOARG inhibition was produced by inclusion of 500 microM of either L-arginine or L-citrulline in the microdialysate. D-NAME (100 microM) minimally affected levels of DA or metabolites. Paradoxically, inclusion of from 20 to 2 microM of the NOx generators isosorbide dinitrate (ISON) or sodium nitroprusside (SNP) in the microdialysis buffer decreased DA and DOPAC levels in microdialysate during METH exposure. This paradox might result from the concentrations of NOx produced by SNP or ISON being great and not regionally specific resulting in inhibition of DA release and/or synthesis while the NO generated endogenously during METH exposure may have localized and site-specific actions. Alternatively, NOx may inhibit NOS or other enzymes in the NO synthesis pathway, thereby reducing levels of an intermediate (other than NO) which potentiates DA release. In their entirety, our results indicate that NO generation in the CPU may augment the release of DA during METH exposure.


Journal of Neurochemistry | 2012

Chronic exposure to corticosterone enhances the neuroinflammatory and neurotoxic responses to methamphetamine

Kimberly A. Kelly; Diane B. Miller; John F. Bowyer; James P. O’Callaghan

J. Neurochem. (2012) 122, 995–1009.


Toxicology and Applied Pharmacology | 2008

The effects of subchronic acrylamide exposure on gene expression, neurochemistry, hormones, and histopathology in the hypothalamus–pituitary–thyroid axis of male Fischer 344 rats

John F. Bowyer; John R. Latendresse; Robert R. Delongchamp; Levan Muskhelishvili; A.R. Warbritton; M. Thomas; E. Tareke; L.P. McDaniel; Daniel R. Doerge

Acrylamide (AA) is an important industrial chemical that is neurotoxic in rodents and humans and carcinogenic in rodents. The observation of cancer in endocrine-responsive tissues in Fischer 344 rats has prompted hypotheses of hormonal dysregulation, as opposed to DNA damage, as the mechanism for tumor induction by AA. The current investigation examines possible evidence for disruption of the hypothalamic-pituitary-thyroid axis from 14 days of repeated exposure of male Fischer 344 rats to doses of AA that range from one that is carcinogenic after lifetime exposure (2.5 mg/kg/d), an intermediate dose (10 mg/kg/d), and a high dose (50 mg/kg/d) that is neurotoxic for this exposure time. The endpoints selected include: serum levels of thyroid and pituitary hormones; target tissue expression of genes involved in hormone synthesis, release, and receptors; neurotransmitters in the CNS that affect hormone homeostasis; and histopathological evaluation of target tissues. These studies showed virtually no evidence for systematic alteration of the hypothalamic-pituitary-thyroid axis and do not support hormone dysregulation as a plausible mechanism for AA-induced thyroid cancer in the Fischer 344 rat. Specifically, there were no significant changes in: 1) mRNA levels in hypothalamus or pituitary for TRH, TSH, thyroid hormone receptor alpha and beta, as well 10 other hormones or releasing factors; 2) mRNA levels in thyroid for thyroglobulin, thyroid peroxidase, sodium iodide symporter, or type I deiodinases; 3) serum TSH or T3 levels (T4 was decreased at high dose only); 4) dopaminergic tone in the hypothalamus and pituitary or importantly 5) increased cell proliferation (Mki67 mRNA and Ki-67 protein levels were not increased) in thyroid or pituitary. These negative findings are consistent with a genotoxic mechanism of AA carcinogenicity based on metabolism to glycidamide and DNA adduct formation. Clarification of this mechanistic dichotomy may be useful in human cancer risk assessments for AA.


Brain Research | 2008

Introducing Black-Gold II, a highly soluble gold phosphate complex with several unique advantages for the histochemical localization of myelin

Larry Schmued; John F. Bowyer; Matthew Cozart; David Heard; Zbigniew Binienda; Merle G. Paule

A novel gold phosphate complex called Black-Gold II with improved myelin staining properties has been developed. It differs from its predecessor, Black-Gold, in that it is highly water soluble at room temperature. This unique physical property confers a number of advantages for the high resolution staining of myelinated fibers. Specifically, it 1) allows for easier solution preparation, eliminating the need for extended heating or sonicating; 2) produces a more uniform and consistent tracer concentration, resulting in more consistent staining and 3) can be used at a 50% higher concentration, resulting in faster and more intense staining without the need for subsequent treatment with gold chloride intensifiers. To characterize the stain, both normal rat brains as well as those exposed to the neurotoxins kainic acid or methamphetamine were examined. The study also incorporates the first application of such stains to examine peripheral nerves of control and acrylamide-exposed rats.


Neurotoxicology | 2003

Plasma Levels of Parent Compound and Metabolites after Doses of Either d-Fenfluramine or d-3,4-Methylenedioxymethamphetamine (MDMA) that Produce Long-Term Serotonergic Alterations

John F. Bowyer; John F. Young; William Slikker; Yossef Itzak; A.J Mayorga; Glenn D. Newport; Syed F. Ali; David L. Frederick; Merle G. Paule

Plasma levels of parent compounds and metabolites were determined in adult rhesus monkeys after doses of either 5mg/kg d-fenfluramine (FEN) or 10mg/kg d-3, 4-methylenedioxymethamphetamine (MDMA) i.m. twice daily for four consecutive days. These treatment regimens have been previously shown to produce long-term serotonin (5-HT) depletions. Peak plasma levels of 2.0+/-0.4 microM FEN were reached within 40min after the first dose of FEN, and then declined rapidly, while peak plasma levels (0.4+/-0.1 microM) of the metabolite norfenfluramine (NFEN) were not reached until 6h after dosing. After the seventh (next to last) dose of FEN, peak plasma levels of FEN were 35% greater than after the first dose while peak NFEN-levels were 500% greater. The t(1/2) for FEN was 2.6+/-0.3h after the first dose and 3.2+/-0.2h after the seventh. The estimated t(1/2) for NFEN was more than 37.6+/-20.5h. Peak plasma levels of 9.5+/-2.5 microM MDMA were reached within 20min after the first dose of MDMA, and then declined rapidly, while peak plasma levels (0.9+/-0.2 microM) of the metabolite 3,4-methylenedioxyamphetamine (MDA) were not reached until 3-6h after dosing. After the seventh (next to last) dose of MDMA, peak plasma levels of MDMA were 30% greater than the first dose while peak MDA levels were elevated over 200%. The t(1/2) for MDMA was 2.8+/-0.4h after the first and 3.9+/-1.1h after the seventh dose. The estimated t(1/2) for MDA was about 8.3+/-1.0h. Variability in plasma levels of MDMA and MDA between subjects was much greater than that for FEN and NFEN. This variability in MDMA and MDA exposure levels may have lead to variability in the subsequent disruption of some behaviors seen in these same subjects. There were 80% reductions in the plasma membrane-associated 5-HT transporters 6 months after either the FEN or MDMA dosing regimen indicating that both treatments produced long-term serotonergic effects.


Brain Research | 1996

Parenterally administered 3-nitropropionic acid and amphetamine can combine to produce damage to terminals and cell bodies in the striatum

John F. Bowyer; Peter Clausing; Larry Schmued; David L. Davies; Zbigniew Binienda; Glenn D. Newport; Andrew C. Scallet; William Slikker

The combined effects of amphetamine (AMPH) and 3-nitropropionic acid (3-NPA) were investigated to determine how the energy depletion proposed to be produced by AMPH interacts with an inhibitor of mitochondrial respiration to produce striatal neurotoxicity. Neither two doses (2 h apart) of 3.75 mg/kg AMPH alone nor a single dose of 30 mg/kg 3-NPA i.p. produced neurotoxicity in the striatum or lowered striatal dopamine content in rat. Administration of 40 mg/kg of 3-NPA alone almost invariably produced either lethality or did not produce neurotoxicity in the striatum of surviving animals. However, 30 mg/kg of 3-NPA administered along with 2 doses of 3.75 mg/kg AMPH to 47 animals produced striatal damage in the 31 survivors with 15 of the surviving rats showing muscle rigidity/catatonia for several days after dosing, along with decreased food consumption. Thirteen of these 15 rats showed degeneration of axons and cell bodies in the medial caudate-putamen with minimal damage to the globus pallidus. However, two rats exhibited hindlimb paralysis and signs of axonal and neuronal soma degeneration in the thalamus and cerebellar nuclei as well as striatum. Sixteen of the rats given both AMPH and 3-NPA exhibited only torpidity and loss of muscle tone 1-3 h after dosing. Such rats showed no signs of neuronal cell degeneration in the striatum, but did show significant dopamine depletions (60% of control) and reductions in tyrosine hydroxylase immunoreactivity at 14 days postexposure. The mitochondrial dysfunction produced by 3-NPA combined with activation of neuronal pathways by AMPH may have predisposed terminals, axons and cell bodies in striatum to degeneration.

Collaboration


Dive into the John F. Bowyer's collaboration.

Top Co-Authors

Avatar

William Slikker

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Glenn D. Newport

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

R.Robert Holson

New Mexico Institute of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar

Peter Clausing

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Syed F. Ali

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Larry Schmued

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Nysia I. George

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Daniel R. Doerge

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Robert R. Delongchamp

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Karen M. Tranter

National Center for Toxicological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge