Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nysia I. George is active.

Publication


Featured researches published by Nysia I. George.


PLOS ONE | 2017

Assessing Sex Differences in the Risk of Cardiovascular Disease and Mortality per Increment in Systolic Blood Pressure: A Systematic Review and Meta-Analysis of Follow-Up Studies in the United States

Yu-Chung Wei; Nysia I. George; Ching-Wei Chang; Karen A. Hicks

In the United States (US), cardiovascular (CV) disease accounts for nearly 20% of national health care expenses. Since costs are expected to increase with the aging population, informative research is necessary to address the growing burden of CV disease and sex-related differences in diagnosis, treatment, and outcomes. Hypertension is a major risk factor for CV disease and mortality. To evaluate whether there are sex-related differences in the effect of systolic blood pressure (SBP) on the risk of CV disease and mortality, we performed a systematic review and meta-analysis. We conducted a comprehensive search using PubMed and Google Scholar to identify US-based studies published prior to 31 December, 2015. We identified eight publications for CV disease risk, which provided 9 female and 8 male effect size (ES) observations. We also identified twelve publications for CV mortality, which provided 10 female and 18 male ES estimates. Our meta-analysis estimated that the pooled ES for increased risk of CV disease per 10 mmHg increment in SBP was 25% for women (95% Confidence Interval (CI): 1.18, 1.32) and 15% for men (95% CI: 1.11, 1.19). The pooled increase in CV mortality per 10 mm Hg SBP increment was similar for both women and men (Women: 1.16; 95% CI: 1.10, 1.23; Men: 1.17; 95% CI: 1.12, 1.22). After adjusting for age and baseline SBP, the results demonstrated that the risk of CV disease per 10 mm Hg SBP increment for women was 1.1-fold higher than men (P<0.01; 95% CI: 1.04, 1.17). Heterogeneity was moderate but significant. There was no significant sex difference in CV mortality.


PLOS ONE | 2015

An Iterative Leave-One-Out Approach to Outlier Detection in RNA-Seq Data.

Nysia I. George; John F. Bowyer; Nathaniel M. Crabtree; Ching-Wei Chang

The discrete data structure and large sequencing depth of RNA sequencing (RNA-seq) experiments can often generate outlier read counts in one or more RNA samples within a homogeneous group. Thus, how to identify and manage outlier observations in RNA-seq data is an emerging topic of interest. One of the main objectives in these research efforts is to develop statistical methodology that effectively balances the impact of outlier observations and achieves maximal power for statistical testing. To reach that goal, strengthening the accuracy of outlier detection is an important precursor. Current outlier detection algorithms for RNA-seq data are executed within a testing framework and may be sensitive to sparse data and heavy-tailed distributions. Therefore, we propose a univariate algorithm that utilizes a probabilistic approach to measure the deviation between an observation and the distribution generating the remaining data and implement it within in an iterative leave-one-out design strategy. Analyses of real and simulated RNA-seq data show that the proposed methodology has higher outlier detection rates for both non-normalized and normalized negative binomial distributed data.


BMC Bioinformatics | 2014

DAFS: a data-adaptive flag method for RNA-sequencing data to differentiate genes with low and high expression

Nysia I. George; Ching-Wei Chang

BackgroundNext-generation sequencing (NGS) has advanced the application of high-throughput sequencing technologies in genetic and genomic variation analysis. Due to the large dynamic range of expression levels, RNA-seq is more prone to detect transcripts with low expression. It is clear that genes with no mapped reads are not expressed; however, there is ongoing debate about the level of abundance that constitutes biologically meaningful expression. To date, there is no consensus on the definition of low expression. Since random variation is high in regions with low expression and distributions of transcript expression are affected by numerous experimental factors, methods to differentiate low and high expressed data in a sample are critical to interpreting classes of abundance levels in RNA-seq data.ResultsA data-adaptive approach was developed to estimate the lower bound of high expression for RNA-seq data. The Kolmgorov-Smirnov statistic and multivariate adaptive regression splines were used to determine the optimal cutoff value for separating transcripts with high and low expression. Results from the proposed method were compared to results obtained by estimating the theoretical cutoff of a fitted two-component mixture distribution. The robustness of the proposed method was demonstrated by analyzing different RNA-seq datasets that varied by sequencing depth, species, scale of measurement, and empirical density shape.ConclusionsThe analysis of real and simulated data presented here illustrates the need to employ data-adaptive methodology in lieu of arbitrary cutoffs to distinguish low expressed RNA-seq data from high expression. Our results also present the drawbacks of characterizing the data by a two-component mixture distribution when classes of gene expression are not well separated. The ability to ascertain stably expressed RNA-seq data is essential in the filtering process of data analysis, and methodologies that consider the underlying data structure demonstrate superior performance in preserving most of the interpretable and meaningful data. The proposed algorithm for classifying low and high regions of transcript abundance promises wide-range application in the continuing development of RNA-seq analysis.


Journal of Applied Toxicology | 2016

Early metabolomics changes in heart and plasma during chronic doxorubicin treatment in B6C3F1 mice

Laura K. Schnackenberg; Lisa Pence; Vikrant Vijay; Carrie L. Moland; Nysia I. George; Zhijun Cao; Li-Rong Yu; James C. Fuscoe; Richard D. Beger; Varsha G. Desai

The present study aimed to identify molecular markers of early stages of cardiotoxicity induced by a potent chemotherapeutic agent, doxorubicin (DOX). Male B6C3F1 mice were dosed with 3 mg kg−1 DOX or saline via tail vein weekly for 2, 3, 4, 6 or 8 weeks (cumulative DOX doses of 6, 9, 12, 18 or 24 mg kg−1, respectively) and euthanized a week after the last dose. Mass spectrometry‐based and nuclear magnetic resonance spectrometry‐based metabolic profiling were employed to identify initial biomarkers of cardiotoxicity before myocardial injury and cardiac pathology, which were not noted until after the 18 and 24 mg kg−1 cumulative doses, respectively. After a cumulative dose of 6 mg kg−1, 18 amino acids and four biogenic amines (acetylornithine, kynurenine, putrescine and serotonin) were significantly increased in cardiac tissue; 16 amino acids and two biogenic amines (acetylornithine and hydroxyproline) were significantly altered in plasma. In addition, 16 acylcarnitines were significantly increased in plasma and five were significantly decreased in cardiac tissue compared to saline‐treated controls. Plasma lactate and succinate, involved in the Krebs cycle, were significantly altered after a cumulative dose of 6 mg kg−1. A few metabolites remained altered at higher cumulative DOX doses, which could partly indicate a transition from injury processes at 2 weeks to repair processes with additional injury happening concurrently before myocardial injury at 8 weeks. These altered metabolic profiles in mouse heart and plasma during the initial stages of injury progression due to DOX treatment may suggest these metabolites as candidate early biomarkers of cardiotoxicity. Published 2016. This article is a U.S. Government work and is in the public domain in the USA


Risk Analysis | 2013

Model Uncertainty and Model Averaging in the Estimation of Infectious Doses for Microbial Pathogens

Hojin Moon; Steven B. Kim; James J. Chen; Nysia I. George; Ralph L. Kodell

Food-borne infection is caused by intake of foods or beverages contaminated with microbial pathogens. Dose-response modeling is used to estimate exposure levels of pathogens associated with specific risks of infection or illness. When a single dose-response model is used and confidence limits on infectious doses are calculated, only data uncertainty is captured. We propose a method to estimate the lower confidence limit on an infectious dose by including model uncertainty and separating it from data uncertainty. The infectious dose is estimated by a weighted average of effective dose estimates from a set of dose-response models via a Kullback information criterion. The confidence interval for the infectious dose is constructed by the delta method, where data uncertainty is addressed by a bootstrap method. To evaluate the actual coverage probabilities of the lower confidence limit, a Monte Carlo simulation study is conducted under sublinear, linear, and superlinear dose-response shapes that can be commonly found in real data sets. Our model-averaging method achieves coverage close to nominal in almost all cases, thus providing a useful and efficient tool for accurate calculation of lower confidence limits on infectious doses.


PLOS ONE | 2015

Evaluating the Stability of RNA-Seq Transcriptome Profiles and Drug-Induced Immune-Related Expression Changes in Whole Blood.

John F. Bowyer; Karen M. Tranter; Joseph P. Hanig; Nathaniel M. Crabtree; Robert P. Schleimer; Nysia I. George

Methods were developed to evaluate the stability of rat whole blood expression obtained from RNA sequencing (RNA-seq) and assess changes in whole blood transcriptome profiles in experiments replicated over time. Expression was measured in globin-depleted RNA extracted from the whole blood of Sprague-Dawley rats, given either saline (control) or neurotoxic doses of amphetamine (AMPH). The experiment was repeated four times (paired control and AMPH groups) over a 2-year span. The transcriptome of the control and AMPH-treated groups was evaluated on: 1) transcript levels for ribosomal protein subunits; 2) relative expression of immune-related genes; 3) stability of the control transcriptome over 2 years; and 4) stability of the effects of AMPH on immune-related genes over 2 years. All, except one, of the 70 genes that encode the 80s ribosome had levels that ranked in the top 5% of all mean expression levels. Deviations in sequencing performance led to significant changes in the ribosomal transcripts. The overall expression profile of immune-related genes and genes specific to monocytes, T-cells or B-cells were well represented and consistent within treatment groups. There were no differences between the levels of ribosomal transcripts in time-matched control and AMPH groups but significant differences in the expression of immune-related genes between control and AMPH groups. AMPH significantly increased expression of some genes related to monocytes but down-regulated those specific to T-cells. These changes were partially due to changes in the two types of leukocytes present in blood, which indicate an activation of the innate immune system by AMPH. Thus, the stability of RNA-seq whole blood transcriptome can be verified by assessing ribosomal protein subunits and immune-related gene expression. Such stability enables the pooling of samples from replicate experiments to carry out differential expression analysis with acceptable power.


Journal of Neurochemistry | 2017

Corticosterone and Exogenous Glucose Alter Blood Glucose levels, Neurotoxicity, and Vascular Toxicity Produced by Methamphetamine

John F. Bowyer; Karen M. Tranter; Sumit Sarkar; Nysia I. George; Joseph P. Hanig; Kimberly A. Kelly; Lindsay T. Michalovicz; Diane B. Miller; James P. O'Callaghan

Our previous studies have raised the possibility that altered blood glucose levels may influence and/or be predictive of methamphetamine (METH) neurotoxicity. This study evaluated the effects of exogenous glucose and corticosterone (CORT) pretreatment alone or in combination with METH on blood glucose levels and the neural and vascular toxicity produced. METH exposure consisted of four sequential injections of 5, 7.5, 10, and 10 mg/kg (2 h between injections) D‐METH. The three groups given METH in combination with saline, glucose (METH+Glucose), or CORT (METH+CORT) had significantly higher glucose levels compared to the corresponding treatment groups without METH except at 3 h after the last injection. At this last time point, the METH and METH+Glucose groups had lower levels than the non‐METH groups, while the METH+CORT group did not. CORT alone or glucose alone did not significantly increase blood glucose. Mortality rates for the METH+CORT (40%) and METH+Glucose (44%) groups were substantially higher than the METH (< 10%) group. Additionally, METH+CORT significantly increased neurodegeneration above the other three METH treatment groups (≈ 2.5‐fold in the parietal cortex). Thus, maintaining elevated levels of glucose during METH exposure increases lethality and may exacerbate neurodegeneration. Neuroinflammation, specifically microglial activation, was associated with degenerating neurons in the parietal cortex and thalamus after METH exposure. The activated microglia in the parietal cortex were surrounding vasculature in most cases and the extent of microglial activation was exacerbated by CORT pretreatment. Our findings show that acute CORT exposure and elevated blood glucose levels can exacerbate METH‐induced vascular damage, neuroinflammation, neurodegeneration and lethality.


PLOS ONE | 2016

Dietary Iodine Sufficiency and Moderate Insufficiency in the Lactating Mother and Nursing Infant: A Computational Perspective

W. Fisher; Jian Wang; Nysia I. George; Jeffery M. Gearhart; Eva D. McLanahan

The Institute of Medicine recommends that lactating women ingest 290 μg iodide/d and a nursing infant, less than two years of age, 110 μg/d. The World Health Organization, United Nations Children’s Fund, and International Council for the Control of Iodine Deficiency Disorders recommend population maternal and infant urinary iodide concentrations ≥ 100 μg/L to ensure iodide sufficiency. For breast milk, researchers have proposed an iodide concentration range of 150–180 μg/L indicates iodide sufficiency for the mother and infant, however no national or international guidelines exist for breast milk iodine concentration. For the first time, a lactating woman and nursing infant biologically based model, from delivery to 90 days postpartum, was constructed to predict maternal and infant urinary iodide concentration, breast milk iodide concentration, the amount of iodide transferred in breast milk to the nursing infant each day and maternal and infant serum thyroid hormone kinetics. The maternal and infant models each consisted of three sub-models, iodide, thyroxine (T4), and triiodothyronine (T3). Using our model to simulate a maternal intake of 290 μg iodide/d, the average daily amount of iodide ingested by the nursing infant, after 4 days of life, gradually increased from 50 to 101 μg/day over 90 days postpartum. The predicted average lactating mother and infant urinary iodide concentrations were both in excess of 100 μg/L and the predicted average breast milk iodide concentration, 157 μg/L. The predicted serum thyroid hormones (T4, free T4 (fT4), and T3) in both the nursing infant and lactating mother were indicative of euthyroidism. The model was calibrated using serum thyroid hormone concentrations for lactating women from the United States and was successful in predicting serum T4 and fT4 levels (within a factor of two) for lactating women in other countries. T3 levels were adequately predicted. Infant serum thyroid hormone levels were adequately predicted for most data. For moderate iodide deficient conditions, where dietary iodide intake may range from 50 to 150 μg/d for the lactating mother, the model satisfactorily described the iodide measurements, although with some variation, in urine and breast milk. Predictions of serum thyroid hormones in moderately iodide deficient lactating women (50 μg/d) and nursing infants did not closely agree with mean reported serum thyroid hormone levels, however, predictions were usually within a factor of two. Excellent agreement between prediction and observation was obtained for a recent moderate iodide deficiency study in lactating women. Measurements included iodide levels in urine of infant and mother, iodide in breast milk, and serum thyroid hormone levels in infant and mother. A maternal iodide intake of 50 μg/d resulted in a predicted 29–32% reduction in serum T4 and fT4 in nursing infants, however the reduced serum levels of T4 and fT4 were within most of the published reference intervals for infant. This biologically based model is an important first step at integrating the rapid changes that occur in the thyroid system of the nursing newborn in order to predict adverse outcomes from exposure to thyroid acting chemicals, drugs, radioactive materials or iodine deficiency.


Artificial Intelligence Research | 2016

Cost-sensitive performance metric for comparing multiple ordinal classifiers

Nysia I. George; Tzu-Pin Lu; Ching-Wei Chang

The surge of interest in personalized and precision medicine during recent years has increased the application of ordinal classification problems in biomedical science. Currently, accuracy, Kendalls τb , and average mean absolute error are three commonly used metrics for evaluating the effectiveness of an ordinal classifier. Although there are benefits to each, no single metric considers the benefits of predictive accuracy with the tradeoffs of misclassification cost. In addition, decision analysis that considers pairwise analysis of the metrics is not trivial due to inconsistent findings. A new cost-sensitive metric is proposed to find the optimal tradeoff between the two most critical performance measures of a classification task - accuracy and cost. The proposed method accounts for an inherent ordinal data structure, total misclassification cost of a classifier, and imbalanced class distribution. The strengths of the new methodology are demonstrated through analyses of three real cancer datasets and four simulation studies. The new cost-sensitive metric proved better performance in its ability to identify the best ordinal classifier for a given analysis. The performance metric devised in this study provides a comprehensive tool for comparative analysis of multiple (and competing) ordinal classifiers. Consideration of the tradeoff between accuracy and misclassification cost in decisions regarding ordinal classification problems is imperative in real-world application. The work presented here is a precursor to the possibility of incorporating the proposed metric into a prediction modeling algorithm for ordinal data as a means of integrating misclassification cost in final model selection.


Journal of Drug Metabolism and Toxicology | 2017

Epigenome-Wide Association (DNA Methylation) Study of Sex Differencesin Normal Human Kidney

Stancy Joseph; Nysia I. George; Bridgett Green-Knox; Tamara J Nicolson; George Hammons; Beverly Word; Shiew-Mei Huang; Beverly Lyn-Cook

Studies have identified epigenetic sex differences in several human tissues and have implicated epigenetic factors in the regulation of tissue-specific expression. Studies have also shown that women and men respond differently to various drugs, thereby influencing the pharmacokinetics, pharmacodynamics, adverse reactions, efficacy, and safety of a drug. Using Illumina Human Methylation450 BeadChip kit, we investigated the influence of sex on DNA methylation patterns in normal human kidneys (16 females and 15 males). We then related the methylome to mRNA expression levels in kidney structure/function and Drug Metabolizing Enzyme and Transporter (DMET) genes (32 females and 59 males). Our findings indicate that 429 methylated sites on autosomal chromosomes had significant sex-specific differences in the normal human kidney. Methylated sites in/near regions associated with DMET genes or with genes involved in renal structure/function and disease were identified for subsequent analysis. Validation of 2 DMETs genes (POR and ABCA3) and 2 renal structure/function/disease genes (LAMA5 and PLAT) exhibited significant sex-specific differences in mRNA expression. Our results highlight sitespecific sexual dimorphisms (epigenetic-based) in normal human kidney. Importantly, we provide a reference methylome for normal human kidney, which may be utilized to improve our understanding of renal disease and assessing the overall safety and effectiveness of a drug in the kidney.

Collaboration


Dive into the Nysia I. George's collaboration.

Top Co-Authors

Avatar

Ching-Wei Chang

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

John F. Bowyer

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Beverly Lyn-Cook

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Beverly Word

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Nathaniel M. Crabtree

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Bridgett Green-Knox

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

George Hammons

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

James J. Chen

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Karen M. Tranter

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge