John F. Markham
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John F. Markham.
Nature Protocols | 2007
Edwin D. Hawkins; Mirja Hommel; Marian L. Turner; Francis L. Battye; John F. Markham; Philip D. Hodgkin
Cellular proliferation is an essential feature of the adaptive immune response. The introduction of the division tracking dye carboxyfluorescein diacetate succinimidyl ester (CFSE) has made it possible to monitor the number of cell divisions during proliferation and to examine the relationship between proliferation and differentiation. Although qualitative examination of CFSE data may be useful, substantially more information about division and death rates can be extracted from quantitative CFSE time-series experiments. Quantitative methods can reveal in detail how lymphocyte proliferation and survival are regulated and altered by signals such as those received from co-stimulatory molecules, drugs and genetic polymorphisms. In this protocol, we present a detailed method for examining time-series data using graphical and computer-based procedures available to all experimenters.
Science | 2012
Ken R. Duffy; Cameron J. Wellard; John F. Markham; Jie H. S. Zhou; Ross Holmberg; Edwin D. Hawkins; Jhagvaral Hasbold; Mark R. Dowling; Philip D. Hodgkin
Stochastic or Asymmetric Fate Determination? During an adaptive immune response, B lymphocytes rapidly divide and differentiate into effector cell populations, including antibody-secreting plasmablasts and memory B cells. Many also change the class of antibody they secrete, through a process called isotype switching. During this process, some cells die. Whether cells acquire these different fates in a stochastic or programmed manner, however, is unclear. Duffy et al. (p. 338, published online 5 January) used single-cell tracking to determine the times to division, differentiation into a plasmablast, isotype switching, and death of stimulated B lymphocytes. Statistical analysis and mathematical modeling revealed that these cell-fate decisions appear to be the result of random clocks: Which clock went off first (division, differentiation, or death), determined the fate of the cell. Barnett et al. (p. 342, published online 15 December) sought to determine whether asymmetrical cell division, which is thought to contribute to effector cell-fate decisions in T cells, may be at work in B lymphocytes. Indeed, factors important for the initiation and maintenance of germinal center B lymphocyte identity, along with an ancestral polarity protein, were asymmetrically distributed and maintained their asymmetry during cell division. Cell-fate decisions in activated B lymphocytes are determined by stochastic competition. In response to stimulation, B lymphocytes pursue a large number of distinct fates important for immune regulation. Whether each cell’s fate is determined by external direction, internal stochastic processes, or directed asymmetric division is unknown. Measurement of times to isotype switch, to develop into a plasmablast, and to divide or to die for thousands of cells indicated that each fate is pursued autonomously and stochastically. As a consequence of competition between these processes, censorship of alternative outcomes predicts intricate correlations that are observed in the data. Stochastic competition can explain how the allocation of a proportion of B cells to each cell fate is achieved. The B cell may exemplify how other complex cell differentiation systems are controlled.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Edwin D. Hawkins; John F. Markham; L. P. McGuinness; Philip D. Hodgkin
In contrast to most stimulated lymphocytes, B cells exposed to Toll-like receptor 9 ligands are nonself-adherent, allowing individual cells and families to be followed in vitro for up to 5 days. These B cells undergo phases typical of an adaptive response, dividing up to 6 times before losing the impetus for further growth and division and eventually dying by apoptosis. Using long-term microscopic imaging, accurate histories of individual lymphocyte fates were collected. Quantitative analysis of family relationships revealed that times to divide of siblings were strongly related but these correlations were progressively lost through consecutive divisions. A weaker, but significant, correlation was also found for death times among siblings. Division cessation is characterized by a loss of cell growth and the division in which this occurs is strongly inherited from the original founder cell and is related to the size this cell reaches before its first division. Thus, simple division-based dilution of factors synthesized during the first division may control the maximum division reached by stimulated cells. The stochastic distributions of times to divide, times to die, and divisions reached are also measured. Together, these results highlight the internal cellular mechanisms that control immune responses and provide a foundation for the development of new mathematical models that are correct at both single-cell and population levels.
Science | 2012
Sang-Won Lee; Philip F. Markham; Mauricio J. C. Coppo; Alistair R. Legione; John F. Markham; Amir H. Noormohammadi; Glenn F. Browning; Nino Ficorilli; Carol A. Hartley; Joanne M. Devlin
Problems can arise when vaccines and wild strains of a chicken herpesvirus recombine. Recombination between herpesviruses has been seen in vitro and in vivo under experimental conditions. This has raised safety concerns about using attenuated herpesvirus vaccines in human and veterinary medicine and adds to other known concerns associated with their use, including reversion to virulence and disease arising from recurrent reactivation of lifelong chronic infection. We used high-throughput sequencing to investigate relationships between emergent field strains and vaccine strains of infectious laryngotracheitis virus (ILTV, gallid herpesvirus 1). We show that independent recombination events between distinct attenuated vaccine strains resulted in virulent recombinant viruses that became the dominant strains responsible for widespread disease in Australian commercial poultry flocks. These findings highlight the risks of using multiple different attenuated herpesvirus vaccines, or vectors, in the same populations.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Mark R. Dowling; Andrey Kan; Susanne Heinzel; Jie H. S. Zhou; Julia M. Marchingo; Cameron J. Wellard; John F. Markham; Philip D. Hodgkin
Significance Cell division is essential for an effective immune response. Estimates of rates of division are often based on DNA measurements interpreted with an appropriate model for internal cell cycle steps. Here we use time-lapse microscopy and single cell tracking of T and B lymphocytes from reporter mice to measure times spent in cell cycle phases. These data led us to a stretched cell cycle model, a novel and improved mathematical description of cell cycle progression for proliferating lymphocytes. Our model can be used to deduce cell cycle parameters for lymphocytes from DNA and BrdU labeling and will be useful when comparing the effects of different stimuli, or therapeutic treatments on immune responses, or to understand molecular pathways controlling cell division. Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells. This result is inconsistent with models that assume independent times for consecutive phases. Instead, we propose a stretching model for dividing lymphocytes where all parts of the cell cycle are proportional to total division time. Data fitting based on a stretched cell cycle model can significantly improve estimates of cell cycle parameters drawn from DNA labeling data used to monitor immune cell dynamics.
BMC Genomics | 2011
Sang-Won Lee; Philip F. Markham; John F. Markham; Ivonne Petermann; Amir H. Noormohammadi; Glenn F. Browning; Nino Ficorilli; Carol A. Hartley; Joanne M. Devlin
BackgroundInfectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes acute respiratory disease in chickens worldwide. To date, only one complete genomic sequence of ILTV has been reported. This sequence was generated by concatenating partial sequences from six different ILTV strains. Thus, the full genomic sequence of a single (individual) strain of ILTV has not been determined previously. This study aimed to use high throughput sequencing technology to determine the complete genomic sequence of a live attenuated vaccine strain of ILTV.ResultsThe complete genomic sequence of the Serva vaccine strain of ILTV was determined, annotated and compared to the concatenated ILTV reference sequence. The genome size of the Serva strain was 152,628 bp, with a G + C content of 48%. A total of 80 predicted open reading frames were identified. The Serva strain had 96.5% DNA sequence identity with the concatenated ILTV sequence. Notably, the concatenated ILTV sequence was found to lack four large regions of sequence, including 528 bp and 594 bp of sequence in the UL29 and UL36 genes, respectively, and two copies of a 1,563 bp sequence in the repeat regions. Considerable differences in the size of the predicted translation products of 4 other genes (UL54, UL30, UL37 and UL38) were also identified. More than 530 single-nucleotide polymorphisms (SNPs) were identified. Most SNPs were located within three genomic regions, corresponding to sequence from the SA-2 ILTV vaccine strain in the concatenated ILTV sequence.ConclusionsThis is the first complete genomic sequence of an individual ILTV strain. This sequence will facilitate future comparative genomic studies of ILTV by providing an appropriate reference sequence for the sequence analysis of other ILTV strains.
Blood | 2014
Kathryn S. Potts; Tobias Sargeant; John F. Markham; Wei Shi; Christine Biben; Emma C. Josefsson; Lachlan Whitehead; Kelly L. Rogers; Anna Liakhovitskaia; Gordon K. Smyth; Benjamin T. Kile; Alexander Medvinsky; Warren S. Alexander; Douglas J. Hilton; Samir Taoudi
In this study, we test the assumption that the hematopoietic progenitor/colony-forming cells of the embryonic yolk sac (YS), which are endowed with megakaryocytic potential, differentiate into the first platelet-forming cells in vivo. We demonstrate that from embryonic day (E) 8.5 all megakaryocyte (MK) colony-forming cells belong to the conventional hematopoietic progenitor cell (HPC) compartment. Although these cells are indeed capable of generating polyploid MKs, they are not the source of the first platelet-forming cells. We show that proplatelet formation first occurs in a unique and previously unrecognized lineage of diploid platelet-forming cells, which develop within the YS in parallel to HPCs but can be specified in the E8.5 Runx1-null embryo despite the absence of the progenitor cell lineage.
Epigenetics & Chromatin | 2014
David M. Budden; Daniel G. Hurley; Joseph Cursons; John F. Markham; Melissa J. Davis; Edmund J. Crampin
BackgroundTranscription factors (TFs) and histone modifications (HMs) play critical roles in gene expression by regulating mRNA transcription. Modelling frameworks have been developed to integrate high-throughput omics data, with the aim of elucidating the regulatory logic that results from the interactions of DNA, TFs and HMs. These models have yielded an unexpected and poorly understood result: that TFs and HMs are statistically redundant in explaining mRNA transcript abundance at a genome-wide level.ResultsWe constructed predictive models of gene expression by integrating RNA-sequencing, TF and HM chromatin immunoprecipitation sequencing and DNase I hypersensitivity data for two mammalian cell types. All models identified genome-wide statistical redundancy both within and between TFs and HMs, as previously reported. To investigate potential explanations, groups of genes were constructed for ontology-classified biological processes. Predictive models were constructed for each process to explore the distribution of statistical redundancy. We found significant variation in the predictive capacity of TFs and HMs across these processes and demonstrated the predictive power of HMs to be inversely proportional to process enrichment for housekeeping genes.ConclusionsIt is well established that the roles played by TFs and HMs are not functionally redundant. Instead, we attribute the statistical redundancy reported in this and previous genome-wide modelling studies to the heterogeneous distribution of HMs across chromatin domains. Furthermore, we conclude that statistical redundancy between individual TFs can be readily explained by nucleosome-mediated cooperative binding. This could possibly help the cell confer regulatory robustness by rejecting signalling noise and allowing control via multiple pathways.
PLOS ONE | 2013
Sang-Won Lee; Joanne M. Devlin; John F. Markham; Amir H. Noormohammadi; Glenn F. Browning; Nino Ficorilli; Carol A. Hartley; Philip F. Markham
In contrast to the RNA viruses, the genome of large DNA viruses such as herpesviruses have been considered to be relatively stable. Intra-specific recombination has been proposed as an important, but underestimated, driving force in herpesvirus evolution. Recently, two distinct field strains of infectious laryngotracheitis virus (ILTV) have been shown to have arisen from independent recombination events between different commercial ILTV vaccines. In this study we sequenced the genomes of additional ILTV strains and also utilized other recently updated complete genome sequences of ILTV to confirm the existence of a number of ILTV recombinants in nature. Multiple recombination events were detected in the unique long and repeat regions of the genome, but not in the unique short region. Most recombinants contained a pair of crossover points between two distinct lineages of ILTV, corresponding to the European origin and the Australian origin vaccine strains of ILTV. These results suggest that there are two distinct genotypic lineages of ILTV and that these commonly recombine in the field.
Journal of Microscopy | 2011
Andrey Kan; Rajib Chakravorty; James Bailey; Christopher Leckie; John F. Markham; Mark R. Dowling
Cell tracking is a key task in the high‐throughput quantitative study of important biological processes, such as immune system regulation and neurogenesis. Variability in cell density and dynamics in different videos, hampers portability of existing trackers across videos. We address these potability challenges in order to develop a portable cell tracking algorithm. Our algorithm can handle noise in cell segmentation as well as divisions and deaths of cells. We also propose a parameter‐free variation of our tracker. In the tracker, we employ a novel method for recovering the distribution of cell displacements. Further, we present a mathematically justified procedure for determining the gating distance in relation to tracking performance. For the range of real videos tested, our tracker correctly recovers on average 96% of cell moves, and outperforms an advanced probabilistic tracker when the cell detection quality is high. The scalability of our tracker was tested on synthetic videos with up to 200 cells per frame. For more challenging tracking conditions, we propose a novel semi‐automated framework that can increase the ratio of correctly recovered tracks by 12%, through selective manual inspection of only 10% of all frames in a video.