Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John F. Rawls is active.

Publication


Featured researches published by John F. Rawls.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Animals in a bacterial world, a new imperative for the life sciences

Margaret J. McFall-Ngai; Michael G. Hadfield; Thomas C. G. Bosch; Hannah V. Carey; Tomislav Domazet-Lošo; Angela E. Douglas; Nicole Dubilier; Gérard Eberl; Tadashi Fukami; Scott F. Gilbert; Ute Hentschel; Nicole King; Staffan Kjelleberg; Andrew H. Knoll; Natacha Kremer; Sarkis K. Mazmanian; Jessica L. Metcalf; Kenneth H. Nealson; Naomi E. Pierce; John F. Rawls; Ann H. Reid; Edward G. Ruby; Mary E. Rumpho; Jon G. Sanders; Diethard Tautz; Jennifer J. Wernegreen

In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal–bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other’s genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal–bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.


Cell | 2006

Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to Germ-free Recipients Reveal Host Habitat Selection

John F. Rawls; Michael A. Mahowald; Ruth E. Ley; Jeffrey I. Gordon

The gut microbiotas of zebrafish and mice share six bacterial divisions, although the specific bacteria within these divisions differ. To test how factors specific to host gut habitat shape microbial community structure, we performed reciprocal transplantations of these microbiotas into germ-free zebrafish and mouse recipients. The results reveal that communities are assembled in predictable ways. The transplanted community resembles its community of origin in terms of the lineages present, but the relative abundance of the lineages changes to resemble the normal gut microbial community composition of the recipient host. Thus, differences in community structure between zebrafish and mice arise in part from distinct selective pressures imposed within the gut habitat of each host. Nonetheless, vertebrate responses to microbial colonization of the gut are ancient: Functional genomic studies disclosed shared host responses to their compositionally distinct microbial communities and distinct microbial species that elicit conserved responses.


The ISME Journal | 2011

Evidence for a core gut microbiota in the zebrafish.

Guus Roeselers; Erika Mittge; W. Zac Stephens; David M. Parichy; Colleen M. Cavanaugh; Karen Guillemin; John F. Rawls

Experimental analysis of gut microbial communities and their interactions with vertebrate hosts is conducted predominantly in domesticated animals that have been maintained in laboratory facilities for many generations. These animal models are useful for studying coevolved relationships between host and microbiota only if the microbial communities that occur in animals in lab facilities are representative of those that occur in nature. We performed 16S rRNA gene sequence-based comparisons of gut bacterial communities in zebrafish collected recently from their natural habitat and those reared for generations in lab facilities in different geographic locations. Patterns of gut microbiota structure in domesticated zebrafish varied across different lab facilities in correlation with historical connections between those facilities. However, gut microbiota membership in domesticated and recently caught zebrafish was strikingly similar, with a shared core gut microbiota. The zebrafish intestinal habitat therefore selects for specific bacterial taxa despite radical differences in host provenance and domestication status.


Science | 2010

Tuberculous Granuloma Induction via Interaction of a Bacterial Secreted Protein with Host Epithelium

Hannah E. Volkman; Tamara C Pozos; John Zheng; J. Muse Davis; John F. Rawls; Lalita Ramakrishnan

Garnering Information on Granulomas In tuberculosis, the tuberculous granuloma has been viewed traditionally as a host-protective structure that serves to “wall off” mycobacteria. However, recent work in the zebrafish embryo showed that mycobacteria convert the nascent granuloma into a vehicle for bacterial expansion and dissemination. Thus, intercepting granuloma formation could provide a strategy for treating tuberculosis, an urgent public health goal in light of the epidemic of extensively drug-resistant tuberculosis. Now Volkman et al. (p. 466, published online 10 December; see the Perspective by Agarwal and Bishai) present the molecular pathway by which mycobacteria induce granulomas in zebrafish. Inhibition of this pathway attenuates infection by reducing granuloma formation, suggesting a therapeutic target for tuberculosis treatment. Epithelial cells play a role in tubercular granuloma formation and mycobacterial virulence. Granulomas, organized aggregates of immune cells, are a hallmark of tuberculosis and have traditionally been thought to restrict mycobacterial growth. However, analysis of Mycobacterium marinum in zebrafish has shown that the early granuloma facilitates mycobacterial growth; uninfected macrophages are recruited to the granuloma where they are productively infected by M. marinum. Here, we identified the molecular mechanism by which mycobacteria induce granulomas: The bacterial secreted protein 6-kD early secreted antigenic target (ESAT-6), which has long been implicated in virulence, induced matrix metalloproteinase–9 (MMP9) in epithelial cells neighboring infected macrophages. MMP9 enhanced recruitment of macrophages, which contributed to nascent granuloma maturation and bacterial growth. Disruption of MMP9 function attenuated granuloma formation and bacterial growth. Thus, interception of epithelial MMP9 production could hold promise as a host-targeting tuberculosis therapy.


Cell Host & Microbe | 2012

Microbiota Regulate Intestinal Absorption and Metabolism of Fatty Acids in the Zebrafish

Ivana Semova; Juliana D. Carten; Jesse Stombaugh; Lantz C. Mackey; Rob Knight; Steven A. Farber; John F. Rawls

Regulation of intestinal dietary fat absorption is critical to maintaining energy balance. While intestinal microbiota clearly impact the hosts energy balance, their role in intestinal absorption and extraintestinal metabolism of dietary fat is less clear. Using in vivo imaging of fluorescent fatty acid (FA) analogs delivered to gnotobiotic zebrafish hosts, we reveal that microbiota stimulate FA uptake and lipid droplet (LD) formation in the intestinal epithelium and liver. Microbiota increase epithelial LD number in a diet-dependent manner. The presence of food led to the intestinal enrichment of bacteria from the phylum Firmicutes. Diet-enriched Firmicutes and their products were sufficient to increase epithelial LD number, whereas LD size was increased by other bacterial types. Thus, different members of the intestinal microbiota promote FA absorption via distinct mechanisms. Diet-induced alterations in microbiota composition might influence fat absorption, providing mechanistic insight into how microbiota-diet interactions regulate host energy balance.


Gut microbes | 2010

Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas.

Xiang Jun Shen; John F. Rawls; Thomas Randall; Lauren Burcal; Caroline N. Mpande; Natascha Jenkins; Biljana Jovov; Zaid Abdo; Robert S. Sandler; Temitope O. Keku

The human large bowel is colonized by complex and diverse bacterial communities. However, the relationship between commensal bowel bacteria and adenomas (colorectal cancer precursors) is unclear. This study aimed to characterize adherent bacteria in normal colon and evaluate differences in community composition associated with colorectal adenomas. We evaluated adherent bacteria in normal colonic mucosa of 21 adenoma and 23 non-adenoma subjects enrolled in a cross sectional study. Terminal restriction fragment length polymorphism, clone sequencing and fluorescent in-situ hybridization analysis of the 16S rRNA genes were used to characterize adherent bacteria. A total of 335 clones were sequenced and processed for phylogenetic and taxonomic analysis. Differences in bacterial composition between cases and controls were evaluated by UniFrac and analysis of similarity matrix. Overall, Firmicutes (62%), Bacteroidetes (26%) and Proteobacteria (11%) were the most dominant phyla. The bacterial composition differed significantly between cases and controls (UniFrac P<0.001). We observed significantly higher abundance of Proteobacteria (p<0.05) and lower abundance of Bacteroidetes (p<0.05) in cases compared to controls. At the genus level, case subjects showed increased abundance of Dorea spp. (p<0.005), Faecalibacterium spp. (p<0.05), and lower proportions of Bacteroides spp. (p<0.03) and Coprococcus spp. (p< 0.05) than controls. Cases had higher bacterial diversity and richness than controls. These findings reveal that alterations in bacterial community composition associated with adenomas may contribute to the etiology of colorectal cancer. Extension of these findings could lead to strategies to manipulate the microbiota to prevent colorectal adenomas and cancer as well as to identify individuals at high risk.


Hepatology | 2016

The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota

Jérôme Boursier; Olaf Mueller; Matthieu Barret; Mariana Verdelho Machado; Lionel Fizanne; Felix Araujo-Perez; Cynthia D. Guy; Patrick C. Seed; John F. Rawls; Lawrence A. David; Gilles Hunault; Frédéric Oberti; Paul Calès; Anna Mae Diehl

Several animal studies have emphasized the role of gut microbiota in nonalcoholic fatty liver disease (NAFLD). However, data about gut dysbiosis in human NAFLD remain scarce in the literature, especially studies including the whole spectrum of NAFLD lesions. We aimed to evaluate the association between gut dysbiosis and severe NAFLD lesions, that is, nonalcoholic steatohepatitis (NASH) and fibrosis, in a well‐characterized population of adult NAFLD. Fifty‐seven patients with biopsy‐proven NAFLD were enrolled. Taxonomic composition of gut microbiota was determined using 16S ribosomal RNA gene sequencing of stool samples. Thirty patients had F0/F1 fibrosis stage at liver biopsy (10 with NASH), and 27 patients had significant F≥2 fibrosis (25 with NASH). Bacteroides abundance was significantly increased in NASH and F≥2 patients, whereas Prevotella abundance was decreased. Ruminococcus abundance was significantly higher in F≥2 patients. By multivariate analysis, Bacteroides abundance was independently associated with NASH and Ruminococcus with F≥2 fibrosis. Stratification according to the abundance of these two bacteria generated three patient subgroups with increasing severity of NAFLD lesions. Based on imputed metagenomic profiles, Kyoto Encyclopedia of Genes and Genomes pathways significantly related to NASH and fibrosis F≥2 were mostly related to carbohydrate, lipid, and amino acid metabolism. Conclusion: NAFLD severity associates with gut dysbiosis and a shift in metabolic function of the gut microbiota. We identified Bacteroides as independently associated with NASH and Ruminococcus with significant fibrosis. Thus, gut microbiota analysis adds information to classical predictors of NAFLD severity and suggests novel metabolic targets for pre‐/probiotics therapies. (Hepatology 2016;63:764–775)


Current Opinion in Immunology | 2010

Host–microbe interactions in the developing zebrafish

Michelle Kanther; John F. Rawls

The amenability of the zebrafish to in vivo imaging and genetic analysis has fueled expanded use of this vertebrate model to investigate the molecular and cellular foundations of host-microbe relationships. Study of microbial encounters in zebrafish hosts has concentrated on developing embryonic and larval stages, when the advantages of the zebrafish model are maximized. A comprehensive understanding of these host-microbe interactions requires appreciation of the developmental context into which a microbe is introduced, as well as the effects of that microbial challenge on host ontogeny. In this review, we discuss how in vivo imaging and genetic analysis in zebrafish has advanced our knowledge of host-microbe interactions in the context of a developing vertebrate host. We focus on recent insights into immune cell ontogeny and function, commensal microbial relationships in the intestine, and microbial pathogenesis in zebrafish hosts.


Journal of Lipid Research | 2009

Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio)

Edward J. Flynn; Chad M. Trent; John F. Rawls

The global obesity epidemic demands an improved understanding of the developmental and environmental factors regulating fat storage. Adipocytes serve as major sites of fat storage and as regulators of energy balance and inflammation. The optical transparency of developing zebrafish provides new opportunities to investigate mechanisms governing adipocyte biology, however zebrafish adipocytes remain uncharacterized. We have developed methods for visualizing zebrafish adipocytes in vivo by labeling neutral lipid droplets with Nile Red. Our results establish that neutral lipid droplets first accumulate in visceral adipocytes during larval stages and increase in number and distribution as zebrafish grow. We show that the cellular anatomy of zebrafish adipocytes is similar to mammalian white adipocytes and identify peroxisome-proliferator activated receptor &ggr; and fatty acid binding protein 11a as markers of the zebrafish adipocyte lineage. By monitoring adipocyte development prior to neutral lipid deposition, we find that the first visceral preadipocytes appear in association with the pancreas shortly after initiation of exogenous nutrition. Zebrafish reared in the absence of food fail to form visceral preadipocytes, indicating that exogenous nutrition is required for adipocyte development. These results reveal homologies between zebrafish and mammalian adipocytes and establish the zebrafish as a new model for adipocyte research.


Proceedings of the National Academy of Sciences of the United States of America | 2007

In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut

John F. Rawls; Michael A. Mahowald; Andrew L. Goodman; Chad M. Trent; Jeffrey I. Gordon

Complex microbial communities reside within the intestines of humans and other vertebrates. Remarkably little is known about how these microbial consortia are established in various locations within the gut, how members of these consortia behave within their dynamic ecosystems, or what microbial factors mediate mutually beneficial host–microbial interactions. Using a gnotobiotic zebrafish–Pseudomonas aeruginosa model, we show that the transparency of this vertebrate species, coupled with methods for raising these animals under germ-free conditions can be used to monitor microbial movement and localization within the intestine in vivo and in real time. Germ-free zebrafish colonized with isogenic P. aeruginosa strains containing deletions of genes related to motility and pathogenesis revealed that loss of flagellar function results in attenuation of evolutionarily conserved host innate immune responses but not conserved nutrient responses. These results demonstrate the utility of gnotobiotic zebrafish in defining the behavior and localization of bacteria within the living vertebrate gut, identifying bacterial genes that affect these processes, and assessing the impact of these genes on host–microbial interactions.

Collaboration


Dive into the John F. Rawls's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle Kanther

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey I. Gordon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge