John H. Brumell
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John H. Brumell.
Journal of Biological Chemistry | 2006
Cheryl L. Birmingham; Adam C. Smith; Malina A. Bakowski; Tamotsu Yoshimori; John H. Brumell
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes disease in a variety of hosts. S. Typhimurium actively invade host cells and typically reside within a membrane-bound compartment called the Salmonella-containing vacuole (SCV). The bacteria modify the fate of the SCV using two independent type III secretion systems (TTSS). TTSS are known to damage eukaryotic cell membranes and S. Typhimurium has been suggested to damage the SCV using its Salmonella pathogenicity island (SPI)-1 encoded TTSS. Here we show that this damage gives rise to an intracellular bacterial population targeted by the autophagy system during in vitro infection. Approximately 20% of intracellular S. Typhimurium colocalized with the autophagy marker GFP-LC3 at 1 h postinfection. Autophagy of S. Typhimurium was dependent upon the SPI-1 TTSS and bacterial protein synthesis. Bacteria targeted by the autophagy system were often associated with ubiquitinated proteins, indicating their exposure to the cytosol. Surprisingly, these bacteria also colocalized with SCV markers. Autophagy-deficient (atg5-/-) cells were more permissive for intracellular growth by S. Typhimurium than normal cells, allowing increased bacterial growth in the cytosol. We propose a model in which the host autophagy system targets bacteria in SCVs damaged by the SPI-1 TTSS. This serves to retain intracellular S. Typhimurium within vacuoles early after infection to protect the cytosol from bacterial colonization. Our findings support a role for autophagy in innate immunity and demonstrate that Salmonella infection is a powerful model to study the autophagy process.
Journal of Immunology | 2009
Yiyu T. Zheng; Shahab Shahnazari; Andreas Brech; Trond Lamark; Terje Johansen; John H. Brumell
Autophagy, a cellular degradative pathway, plays a key role in protecting the cytosol from bacterial colonization, but the mechanisms of bacterial recognition by this pathway are unclear. Autophagy is also known to degrade cargo tagged by ubiquitinated proteins, including aggregates of misfolded proteins, and peroxisomes. Autophagy of ubiquitinated cargo requires p62 (also known as SQSTM1), an adaptor protein with multiple protein-protein interaction domains, including a ubiquitin-associated (UBA) domain for ubiquitinated cargo binding and an LC3 interaction region (LIR) for binding the autophagy protein LC3. Previous studies demonstrated that the intracellular bacterial pathogen Salmonella typhimurium is targeted by autophagy during infection of host cells. Here we show that p62 is recruited to S. typhimurium targeted by autophagy, and that the recruitment of p62 is associated with ubiquitinated proteins localized to the bacteria. Expression of p62 is required for efficient autophagy of bacteria, as well as restriction of their intracellular replication. Our studies demonstrate that the surveillance of misfolded proteins and bacteria occurs via a conserved pathway, and they reveal a novel function for p62 in innate immunity.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Ju Huang; Veronica Canadien; Grace Y. Lam; Benjamin E. Steinberg; Mary C. Dinauer; Marco A. O. Magalhaes; Michael Glogauer; Sergio Grinstein; John H. Brumell
Autophagy plays an important role in immunity to microbial pathogens. The autophagy system can target bacteria in phagosomes, promoting phagosome maturation and preventing pathogen escape into the cytosol. Recently, Toll-like receptor (TLR) signaling from phagosomes was found to initiate their targeting by the autophagy system, but the mechanism by which TLR signaling activates autophagy is unclear. Here we show that autophagy targeting of phagosomes is not exclusive to those containing TLR ligands. Engagement of either TLRs or the Fcγ receptors (FcγRs) during phagocytosis induced recruitment of the autophagy protein LC3 to phagosomes with similar kinetics. Both receptors are known to activate the NOX2 NADPH oxidase, which plays a central role in microbial killing by phagocytes through the generation of reactive oxygen species (ROS). We found that NOX2-generated ROS are necessary for LC3 recruitment to phagosomes. Antibacterial autophagy in human epithelial cells, which do not express NOX2, was also dependent on ROS generation. These data reveal a coupling of oxidative and nonoxidative killing activities of the NOX2 NADPH oxidase in phagocytes through autophagy. Furthermore, our results suggest a general role for members of the NOX family in regulating autophagy.
Current Biology | 2004
Andrew J. Perrin; Xiuju Jiang; Cheryl L. Birmingham; Nancy S.Y So; John H. Brumell
Recent studies have suggested the existence of innate host surveillance systems for the detection of bacteria in the cytosol of mammalian cells. The molecular details of how bacteria are recognized in the cytosol, however, remain unclear. Here we examined the fate of Salmonella typhimurium, a gram-negative bacterial pathogen that can infect a variety of hosts, in the cytosol of mammalian cells. These bacteria typically occupy a membrane bound compartment, the Salmonella-containing vacuole (SCV), in host cells. We show that some wild-type bacteria escape invasion vacuoles and are released into the cytosol. Subsequently, polyubiquitinated proteins accumulate on the bacterial surface, a response that was witnessed in several cell types. In macrophages but not epithelial cells, the proteasome was observed to undergo a dramatic subcellular relocalization and become associated with the surface of bacteria in the cytosol. Proteasome inhibition promoted replication of S. typhimurium in the cytosol of both cell types, in part through destabilization of the SCV. Surprisingly, the cytosol-adapted pathogen Listeria monocytogenes avoided recognition by the ubiquitin system by using actin-based motility. Our findings indicate that the ubiquitin system plays a major role in the recognition of bacterial pathogens in the cytosol of mammalian cells.
Nature | 2008
Cheryl L. Birmingham; Veronica Canadien; Natalia A. Kaniuk; Benjamin E. Steinberg; Darren E. Higgins; John H. Brumell
Listeria monocytogenes is an intracellular bacterial pathogen that replicates rapidly in the cytosol of host cells during acute infection. Surprisingly, these bacteria were found to occupy vacuoles in liver granuloma macrophages during persistent infection of severe combined immunodeficient (SCID) mice. Here we show that L. monocytogenes can replicate in vacuoles within macrophages. In livers of SCID mice infected for 21 days, we observed bacteria in large LAMP1+ compartments that we termed spacious Listeria-containing phagosomes (SLAPs). SLAPs were also observed in vitro, and were found to be non-acidic and non-degradative compartments that are generated in an autophagy-dependent manner. The replication rate of bacteria in SLAPs was found to be reduced compared to the rate of those in the cytosol. Listeriolysin O (LLO, encoded by hly), a pore-forming toxin essential for L. monocytogenes virulence, was necessary and sufficient for SLAP formation. A L. monocytogenes mutant with low LLO expression was impaired for phagosome escape but replicated slowly in SLAPs over a 72 h period. Therefore, our studies reveal a role for LLO in promoting L. monocytogenes replication in vacuoles and suggest a mechanism by which this pathogen can establish persistent infection in host macrophages.
Diabetes | 2007
Natalia A. Kaniuk; Michael Kiraly; Holly E. Bates; Mladen Vranic; Allen Volchuk; John H. Brumell
Diabetes-induced oxidative stress can lead to protein misfolding and degradation by the ubiquitin-proteasome system. This study examined protein ubiquitination in pancreatic sections from Zucker diabetic fatty rats. We observed large aggregates of ubiquitinated proteins (Ub-proteins) in insulin-expressing β-cells and surrounding acinar cells. The formation of these aggregates was also observed in INS1 832/13 β-cells after exposure to high glucose (30 mmol/l) for 8–72 h, allowing us to further characterize this phenotype. Oxidative stress induced by aminotriazole (ATZ) was sufficient to stimulate Ub-protein aggregate formation. Furthermore, the addition of the antioxidants N-acetyl cysteine (NAC) and taurine resulted in a significant decrease in formation of Ub-protein aggregates in high glucose. Puromycin, which induces defective ribosomal product (DRiP) formation was sufficient to induce Ub-protein aggregates in INS1 832/13 cells. However, cycloheximide (which blocks translation) did not impair Ub-protein aggregate formation at high glucose levels, suggesting that long-lived proteins are targeted to these structures. Clearance of Ub-protein aggregates was observed during recovery in normal medium (11 mmol/l glucose). Despite the fact that 20S proteasome was localized to Ub-protein aggregates, epoxomicin treatment did not affect clearance, indicating that the proteasome does not degrade proteins localized to these structures. The autophagy inhibitor 3MA blocked aggregate clearance during recovery and was sufficient to induce their formation in normal medium. Together, these findings demonstrate that diabetes-induced oxidative stress induces ubiquitination and storage of proteins into cytoplasmic aggregates that do not colocalize with insulin. Autophagy, not the proteasome, plays a key role in regulating their formation and degradation. To our knowledge, this is the first demonstration that autophagy acts as a defense to cellular damage incurred during diabetes.
Autophagy | 2007
Cheryl L. Birmingham; Veronica Canadien; Edith Gouin; Erin B. Troy; Tamotsu Yoshimori; Pascale Cossart; Darren E. Higgins; John H. Brumell
Listeria monocytogenes is an intracellular pathogen that is able to colonize the cytosol of macrophages. Here we examined the interaction of this pathogen with autophagy, a host cytosolicdegradative pathway that constitutes an important component of innate immunity towards microbial invaders. L. monocytogenes infection induced activation of the autophagy system in macrophages. At 1 h post infection (p.i.), a population of intracellular bacteria (~37%) colocalized with the autophagy marker LC3. These bacteria were within vacuoles and were targeted by autophagy in an LLO-dependent manner. At later stages in infection (by 4 h p.i.), the majority of L. monocytogenes escaped into the cytosol and rapidly replicated. At these times, less than 10% of intracellular bacteria colocalized with LC3. We found that ActA expression was sufficient to prevent autophagy of bacteria in the cytosol of macrophages. Surprisingly, ActA expression was not strictly necessary, indicating that other virulence factors were involved. Accordingly, we also found a role for the bacterial phospholipases, PI-PLC and PC-PLC, in autophagy evasion, as bacteria lacking phospholipase expression were targeted by autophagy at later times in infection. Together, our results demonstratethat L. monocytogenes utilizes multiple mechanisms to avoid destruction by the autophagy system during colonization of macrophages.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Molly A. Lynch-Day; Deepali Bhandari; Shekar Menon; Ju Huang; Huaqing Cai; Clinton R. Bartholomew; John H. Brumell; Susan Ferro-Novick; Daniel J. Klionsky
Macroautophagy (hereafter autophagy) is a ubiquitous process in eukaryotic cells that is integrally involved in various aspects of cellular and organismal physiology. The morphological hallmark of autophagy is the formation of double-membrane cytosolic vesicles, autophagosomes, which sequester cytoplasmic cargo and deliver it to the lysosome or vacuole. Thus, autophagy involves dynamic membrane mobilization, yet the source of the lipid that forms the autophagosomes and the mechanism of membrane delivery are poorly characterized. The TRAPP complexes are multimeric guanine nucleotide exchange factors (GEFs) that activate the Rab GTPase Ypt1, which is required for secretion. Here we describe another form of this complex (TRAPPIII) that acts as an autophagy-specific GEF for Ypt1. The Trs85 subunit of the TRAPPIII complex directs this Ypt1 GEF to the phagophore assembly site (PAS) that is involved in autophagosome formation. Consistent with the observation that a Ypt1 GEF is directed to the PAS, we find that Ypt1 is essential for autophagy. This is an example of a Rab GEF that is specifically targeted for canonical autophagosome formation.
Cellular Microbiology | 2002
Olivia Steele-Mortimer; John H. Brumell; Leigh A. Knodler; Stéphane Méresse; Ana Lopez; B. Brett Finlay
Type III secretion systems (TTSS) are used by Gram‐negative pathogens to translocate proteins into eukaryotic host cells. Salmonella enterica serovar Typhimurium (S. Typhimurium) has two of these specialized systems, which are encoded on separate Salmonellapathogenicity islands (SPI‐1 and SPI‐2) and translocate unique sets of effectors. The specific roles of these systems in Salmonella pathogenesis remain undefined, although SPI‐1 is required for bacterial invasion of epithelial cells and SPI‐2 for survival/replication in phagocytic cells. However, because SPI‐1 TTSS mutants are invasion‐incompetent, the role of this TTSS in post‐invasion processes has not been investigated. In this study, we have used two distinct methods to internalize a non‐invasive SPI‐1 TTSS mutant (invA) into cultured epithelial cells: (i) co‐internalization with wild‐type S. Typhimurium (SPI‐1‐dependent) and (ii) complementation with the Yersinia pseudotuberculosis invasin (inv) gene (SPI‐1‐independent). In both cases, internalized invA mutants were unable to replicate intracellularly, indicating that SPI‐1 effectors are essential for this process and cannot be complemented by wild‐type bacteria in the same cell. Analysis of the biogenesis of SCVs showed that vacuoles containing mutant bacteria displayed abnormal maturation that was dependent on the mechanism of entry. Manipulation of Salmonella‐containing vacuole (SCV) biogenesis by pharmacologically perturbing membrane trafficking in the host cell increased intracellular replication of wild‐type but not mutant S. Typhimurium This demonstrates a previously unknown role for SPI‐1 in vacuole biogenesis and intracellular survival in non‐phagocytic cells.
Autophagy | 2011
Daniel J. Klionsky; Eric H. Baehrecke; John H. Brumell; Charleen T. Chu; Patrice Codogno; Ana Maria Cuervo; Jayanta Debnath; Vojo Deretic; Zvulun Elazar; Eeva-Liisa Eskelinen; Steven Finkbeiner; Juan Fueyo-Margareto; David A. Gewirtz; Marja Jäättelä; Guido Kroemer; Beth Levine; Thomas J. Melia; Noboru Mizushima; David C. Rubinsztein; Anne Simonsen; Andrew Thorburn; Michael Thumm; Sharon A. Tooze
The study of autophagy is rapidly expanding, and our knowledge of the molecular mechanism and its connections to a wide range of physiological processes has increased substantially in the past decade. The vocabulary associated with autophagy has grown concomitantly. In fact, it is difficult for readers-even those who work in the field-to keep up with the ever-expanding terminology associated with the various autophagy-related processes. Accordingly, we have developed a comprehensive glossary of autophagy-related terms that is meant to provide a quick reference for researchers who need a brief reminder of the regulatory effects of transcription factors and chemical agents that induce or inhibit autophagy, the function of the autophagy-related proteins, and the roles of accessory components and structures that are associated with autophagy.