Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramzi Fattouh is active.

Publication


Featured researches published by Ramzi Fattouh.


Gut | 2012

NADPH oxidase complex and IBD candidate gene studies: identification of a rare variant in NCF2 that results in reduced binding to RAC2

Aleixo M. Muise; Wei Xu; Conghui Guo; Thomas D. Walters; Victorien M. Wolters; Ramzi Fattouh; Grace Y. Lam; Pingzhao Hu; Ryan Murchie; Mary Sherlock; Juan Cristóbal Gana; Neopics; Richard K. Russell; Michael Glogauer; Richard H. Duerr; Judy H. Cho; Charlie W. Lees; Jack Satsangi; David C. Wilson; Andrew D. Paterson; Anne M. Griffiths; Mark S. Silverberg; John H. Brumell

Objective The NOX2 NADPH oxidase complex produces reactive oxygen species and plays a critical role in the killing of microbes by phagocytes. Genetic mutations in genes encoding components of the complex result in both X-linked and autosomal recessive forms of chronic granulomatous disease (CGD). Patients with CGD often develop intestinal inflammation that is histologically similar to Crohns colitis, suggesting a common aetiology for both diseases. The aim of this study is to determine if polymorphisms in NOX2 NADPH oxidase complex genes that do not cause CGD are associated with the development of inflammatory bowel disease (IBD). Methods Direct sequencing and candidate gene approaches were used to identify susceptibility loci in NADPH oxidase complex genes. Functional studies were carried out on identified variants. Novel findings were replicated in independent cohorts. Results Sequence analysis identified a novel missense variant in the neutrophil cytosolic factor 2 (NCF2) gene that is associated with very early onset IBD (VEO-IBD) and subsequently found in 4% of patients with VEO-IBD compared with 0.2% of controls (p=1.3×10−5, OR 23.8 (95% CI 3.9 to 142.5); Fisher exact test). This variant reduced binding of the NCF2 gene product p67phox to RAC2. This study found a novel genetic association of RAC2 with Crohns disease (CD) and replicated the previously reported association of NCF4 with ileal CD. Conclusion These studies suggest that the rare novel p67phox variant results in partial inhibition of oxidase function and are associated with CD in a subgroup of patients with VEO-IBD; and suggest that components of the NADPH oxidase complex are associated with CD.


Gastroenterology | 2014

Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease

Yaron Avitzur; Conghui Guo; Lucas A. Mastropaolo; Ehsan Bahrami; Hannah Chen; Zhen Zhao; Abdul Elkadri; Sandeep S. Dhillon; Ryan Murchie; Ramzi Fattouh; Hien Huynh; Jennifer Walker; Paul W. Wales; Ernest Cutz; Yoichi Kakuta; Joel Dudley; Jochen Kammermeier; Fiona Powrie; Neil P. Shah; Christoph Walz; Michaela Nathrath; Daniel Kotlarz; Jacek Puchaka; Jonathan R. Krieger; Tomas Racek; Thomas Kirchner; Thomas D. Walters; John H. Brumell; Anne M. Griffiths; Nima Rezaei

BACKGROUND & AIMSnVery early onset inflammatory bowel diseases (VEOIBD), including infant disorders, are a diverse group of diseases found in children younger than 6 years of age. They have been associated with several gene variants. Our aim was to identify the genes that cause VEOIBD.nnnMETHODSnWe performed whole exome sequencing of DNA from 1 infant with severe enterocolitis and her parents. Candidate gene mutations were validated in 40 pediatric patients and functional studies were carried out using intestinal samples and human intestinal cell lines.nnnRESULTSnWe identified compound heterozygote mutations in the Tetratricopeptide repeat domain 7 (TTC7A) gene in an infant from non-consanguineous parents with severe exfoliative apoptotic enterocolitis; we also detected TTC7A mutations in 2 unrelated families, each with 2 affected siblings. TTC7A interacts with EFR3 homolog B to regulate phosphatidylinositol 4-kinase at the plasma membrane. Functional studies demonstrated that TTC7A is expressed in human enterocytes. The mutations we identified in TTC7A result in either mislocalization or reduced expression of TTC7A. Phosphatidylinositol 4-kinase was found to co-immunoprecipitate with TTC7A; the identified TTC7A mutations reduced this binding. Knockdown of TTC7A in human intestinal-like cell lines reduced their adhesion, increased apoptosis, and decreased production of phosphatidylinositol 4-phosphate.nnnCONCLUSIONSnIn a genetic analysis, we identified loss of function mutations in TTC7A in 5 infants with VEOIBD. Functional studies demonstrated that the mutations cause defects in enterocytes and T cells that lead to severe apoptotic enterocolitis. Defects in the phosphatidylinositol 4-kinase-TTC7A-EFR3 homolog B pathway are involved in the pathogenesis of VEOIBD.


Journal of Experimental Medicine | 2014

Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo

Derek K. Chu; Rodrigo Jiménez-Saiz; Chris P. Verschoor; Tina D. Walker; Susanna Goncharova; Alba Llop-Guevara; Pamela Shen; Melissa E. Gordon; Nicole G. Barra; Jennifer Bassett; Joshua Kong; Ramzi Fattouh; Kathleen McCoy; Dawn M. E. Bowdish; Jonas Erjefält; Oliver Pabst; Alison A. Humbles; Roland Kolbeck; Susan Waserman; Manel Jordana

Eosinophil degranulation of peroxidase promotes DC activation and mobilization from the intestine to LNs to induce Th2 immunity and food allergy.


Gastroenterology | 2014

Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease.

Sandeep S. Dhillon; Ramzi Fattouh; Abdul Elkadri; Wei Xu; Ryan Murchie; Thomas D. Walters; Conghui Guo; David R. Mack; Hien Huynh; Shairaz Baksh; Mark S. Silverberg; Anne M. Griffiths; Scott B. Snapper; John H. Brumell; Aleixo M. Muise

BACKGROUND & AIMSnThe colitis observed in patients with very early onset inflammatory bowel disease (VEOIBD; defined as onset of disease at younger than 6 years of age) often resembles that of chronic granulomatous disease (CGD) in extent and features of colonic inflammation observed by endoscopy and histology. CGD is a severe immunodeficiency caused by defects in the genes that encode components of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. We investigated whether variants in genes that encode NADPH oxidase components affect susceptibility to VEOIBD using independent approaches.nnnMETHODSnWe performed targeted exome sequencing of genes that encode components of NADPH oxidases (cytochrome b light chain and encodes p22(phox) protein; cytochrome b-245 or NADPH oxidase 2, and encodes Nox2 or gp91(phox); neutrophil cytosol factor 1 and encodes p47 (phox) protein; neutrophil cytosol factor 2 and encodes p67 (phox) protein; neutrophil cytosol factor 4 and encodes p40 (phox) protein; and Ras-related C3 botulinum toxin substrate 1 and 2) in 122 patients with VEOIBD diagnosed at The Hospital for Sick Children, University of Toronto, from 1994 through 2012. Gene variants were validated in an independent International Early Onset Pediatric IBD Cohort Study cohort of patients with VEOIBD. In a second approach, we examined Tag single nucleotide polymorphisms in a subset of patients with VEOIBD in which the NOX2 NADPH oxidase genes sequence had been previously analyzed. We then looked for single nucleotide polymorphisms associated with the disease in an independent International Early Onset Pediatric IBD Cohort Study cohort of patients. We analyzed the functional effects of variants associated with VEOIBD.nnnRESULTSnTargeted exome sequencing and Tag single nucleotide polymorphism genotyping identified 11 variants associated with VEOIBD; the majority of patients were heterozygous for these variants. Expression of these variants in cells either reduced oxidative burst or altered interactions among proteins in the NADPH oxidase complex. Variants in the noncoding regulatory and splicing elements resulted in reduced levels of proteins, or expression of altered forms of the proteins, in blood cells from VEOIBD patients.nnnCONCLUSIONSnWe found that VEOIBD patients carry heterozygous functional hypomorphic variants in components of the NOX2 NADPH oxidase complex. These do not cause overt immunodeficiency, butxa0instead determine susceptibility to VEOIBD. Specific approaches might be developed to treat individual patients based on their genetic variant.


Nature | 2014

Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread

Mark A. Czuczman; Ramzi Fattouh; Jorik van Rijn; Veronica Canadien; Suzanne E. Osborne; Aleixo M. Muise; Vijay K. Kuchroo; Darren E. Higgins; John H. Brumell

Efferocytosis, the process by which dying or dead cells are removed by phagocytosis, has an important role in development, tissue homeostasis and innate immunity. Efferocytosis is mediated, in part, by receptors that bind to exofacial phosphatidylserine (PS) on cells or cellular debris after loss of plasma membrane asymmetry. Here we show that a bacterial pathogen, Listeria monocytogenes, can exploit efferocytosis to promote cell-to-cell spread during infection. These bacteria can escape the phagosome in host cells by using the pore-forming toxin listeriolysin O (LLO) and two phospholipase C enzymes. Expression of the cell surface protein ActA allows L. monocytogenes to activate host actin regulatory factors and undergo actin-based motility in the cytosol, eventually leading to formation of actin-rich protrusions at the cell surface. Here we show that protrusion formation is associated with plasma membrane damage due to LLO’s pore-forming activity. LLO also promotes the release of bacteria-containing protrusions from the host cell, generating membrane-derived vesicles with exofacial PS. The PS-binding receptor TIM-4 (encoded by the Timd4 gene) contributes to efficient cell-to-cell spread by L. monocytogenes in macrophages in vitro and growth of these bacteria is impaired in Timd4−/− mice. Thus, L. monocytogenes promotes its dissemination in a host by exploiting efferocytosis. Our results indicate that PS-targeted therapeutics may be useful in the fight against infections by L. monocytogenes and other bacteria that use similar strategies of cell-to-cell spread during infection.


Gastroenterology | 2011

Single Nucleotide Polymorphisms That Increase Expression of the Guanosine Triphosphatase RAC1 Are Associated With Ulcerative Colitis

Aleixo M. Muise; Thomas D. Walters; Wei Xu; Grace Shen–Tu; Cong–Hui Guo; Ramzi Fattouh; Grace Y. Lam; Victorien M. Wolters; Joshua D. Bennitz; Johan Van Limbergen; Paul Renbaum; Yair Kasirer; Bo-Yee Ngan; Dan Turner; Lee A. Denson; Philip M. Sherman; Richard H. Duerr; Judy H. Cho; Charlie W. Lees; Jack Satsangi; David C. Wilson; Andrew D. Paterson; Anne M. Griffiths; Michael Glogauer; Mark S. Silverberg; John H. Brumell

BACKGROUND & AIMSnRAC1 is a guanosine triphosphatase that has an evolutionarily conserved role in coordinating immune defenses, from plants to mammals. Chronic inflammatory bowel diseases are associated with dysregulation of immune defenses. We studied the role of RAC1 in inflammatory bowel diseases using human genetic and functional studies and animal models of colitis.nnnMETHODSnWe used a candidate gene approach to HapMap-Tag single nucleotide polymorphisms in a discovery cohort; findings were confirmed in 2 additional cohorts. RAC1 messenger RNA expression was examined from peripheral blood cells of patients. Colitis was induced in mice with conditional disruption of Rac1 in phagocytes by administration of dextran sulfate sodium.nnnRESULTSnWe observed a genetic association between RAC1 with ulcerative colitis in a discovery cohort, 2 independent replication cohorts, and in combined analysis for the single nucleotide polymorphisms rs10951982 (P(combined UC) = 3.3 × 10(-8), odds ratio = 1.43 [95% confidence interval: 1.26-1.63]) and rs4720672 (P(combined UC) = 4.7 × 10(-6), odds ratio = 1.36 [95% confidence interval: 1.19-1.58]). Patients with inflammatory bowel disease who had the rs10951982 risk allele had increased expression of RAC1 compared to those without this allele. Conditional disruption of Rac1 in macrophage and neutrophils of mice protected against dextran sulfate sodium-induced colitis.nnnCONCLUSIONSnHuman studies and knockout mice demonstrated a role for the guanosine triphosphatase RAC1 in the development of ulcerative colitis; increased expression of RAC1 was associated with susceptibility to colitis.


Cell Host & Microbe | 2011

Listeriolysin O suppresses phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection.

Grace Y. Lam; Ramzi Fattouh; Aleixo M. Muise; Sergio Grinstein; Darren E. Higgins; John H. Brumell

The intracellular bacterial pathogen Listeria monocytogenes produces phospholipases C (PI-PLC and PC-PLC) and the pore-forming cytolysin listeriolysin O (LLO) to escape the phagosome and replicate within the host cytosol. We found that PLCs can also activate the phagocyte NADPH oxidase during L.xa0monocytogenes infection, a response that would adversely affect pathogen survival. However, secretion of LLO inhibits the NADPH oxidase by preventing its localization to phagosomes. LLO-deficient bacteria can be complemented by perfringolysin O,xa0a related cytolysin, suggesting that other pathogens may also use pore-forming cytolysins to inhibit the NADPH oxidase. Our studies demonstrate that while the PLCs induce antimicrobial NADPH oxidase activity, this effect is alleviated by the pore-forming activity of LLO. Therefore, the combined activities of PLCs and LLO on membrane lysis and the inhibitory effects of LLO on NADPH oxidase activity allow L.xa0monocytogenes to efficiently escape the phagosome while avoiding the microbicidal respiratory burst.


The Journal of Infectious Diseases | 2015

The Diaphanous-Related Formins Promote Protrusion Formation and Cell-to-Cell Spread of Listeria monocytogenes

Ramzi Fattouh; Hyunwoo Kwon; Mark A. Czuczman; John W. Copeland; Laurence Pelletier; Margot E. Quinlan; Aleixo M. Muise; Darren E. Higgins; John H. Brumell

The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular pathogen whose virulence depends on its ability to spread from cell to cell within an infected host. Although the actin-related protein 2/3 (Arp2/3) complex is necessary and sufficient for Listeria actin tail assembly, previous studies suggest that other actin polymerization factors, such as formins, may participate in protrusion formation. Here, we show that Arp2/3 localized to only a minor portion of the protrusion. Moreover, treatment of L. monocytogenes-infected HeLa cells with a formin FH2-domain inhibitor significantly reduced protrusion length. In addition, the Diaphanous-related formins 1-3 (mDia1-3) localized to protrusions, and knockdown of mDia1, mDia2, and mDia3 substantially decreased cell-to-cell spread of L. monocytogenes. Rho GTPases are known to be involved in formin activation. Our studies also show that knockdown of several Rho family members significantly influenced bacterial cell-to-cell spread. Collectively, these findings identify a Rho GTPase-formin network that is critically involved in the cell-to-cell spread of L. monocytogenes.


Journal of Innate Immunity | 2015

Helicobacter pylori Inhibits Dendritic Cell Maturation via Interleukin-10-Mediated Activation of the Signal Transducer and Activator of Transcription 3 Pathway

David Rizzuti; Michelle Ang; Christiane Sokollik; Ted Wu; Majd Abdullah; Laura Greenfield; Ramzi Fattouh; Colin Reardon; Michael Tang; Jun Diao; Christian Schindler; Mark S. Cattral; Nicola L. Jones

Helicobacter pylori infects the human gastric mucosa causing a chronic infection that is the primary risk factor for gastric cancer development. Recent studies demonstrate that H. pylori promotes tolerogenic dendritic cell (DC) development indicating that this bacterium evades the host immune response. However, the signaling pathways involved in modulating DC activation during infection remain unclear. Here, we report that H. pylori infection activated the signal transducer and activator of transcription 3 (STAT3) pathway in murine bone marrow-derived DCs (BMDCs) and splenic DCs isolated ex vivo. Isogenic cagA-, cagE-, vacA- and urease-mutants exhibited levels of phosphoSTAT3 that were comparable to in the wild-type (WT) parent strain. H. pylori-infected BMDCs produced increased immunosuppressive IL-10, which activated STAT3 in an autocrine/paracrine fashion. Neutralization of IL-10 prevented H. pylori-mediated STAT3 activation in both BMDCs and splenic DCs. In addition, anti-IL-10 treatment of infected H. pylori-BMDCs was associated with increased CD86 and MHC II expression and enhanced proinflammatory IL-1β cytokine secretion. Finally, increased CD86 and MHC II expression was detected in H. pylori-infected STAT3 knockout DCs when compared to WT controls. Together, these results demonstrate that H. pylori infection induces IL-10 secretion in DCs, which activates STAT3, thereby modulating DC maturation and reducing IL-1β secretion. These findings identify a host molecular mechanism by which H. pylori can manipulate the innate immune response to potentially favor chronic infection and promote carcinogenesis.


PLOS ONE | 2013

Rac2-Deficiency Leads to Exacerbated and Protracted Colitis in Response to Citrobacter rodentium Infection

Ramzi Fattouh; Cong–Hui Guo; Grace Y. Lam; Mélanie G. Gareau; Bo-Yee Ngan; Michael Glogauer; Aleixo M. Muise; John H. Brumell

Recent genetic-based studies have implicated a number of immune-related genes in the pathogenesis of inflammatory bowel disease (IBD). Our recent genetic studies showed that RAC2 is associated with human IBD; however, its role in disease pathogenesis is unclear. Given Rac2’s importance in various fundamental immune cell processes, we investigated whether a defect in Rac2 may impair host immune responses in the intestine and promote disease in the context of an infection-based (Citrobacter rodentium) model of colitis. In response to infection, Rac2−/− mice showed i) worsened clinical symptoms (days 13–18), ii) increased crypt hyperplasia at days 11 and 22 (a time when crypt hyperplasia was largely resolved in wild-type mice; WT), and iii) marked mononuclear cell infiltration characterized by higher numbers of T (CD3+) cells (day 22), compared to WT-infected mice. Moreover, splenocytes harvested from infected Rac2−/− mice and stimulated in vitro with C. rodentium lysate produced considerably higher levels of interferon-γ and interleukin-17A. The augmented responses observed in Rac2−/− mice did not appear to stem from Rac2’s role in NADPH oxidase-driven reactive oxygen species production as no differences in crypt hyperplasia, nor inflammation, were observed in infected NOX2−/− mice compared to WT. Collectively, our findings demonstrate that Rac2−/− mice develop more severe disease when subjected to a C. rodentium-induced model of infectious colitis, and suggest that impaired Rac2 function may promote the development of IBD in humans.

Collaboration


Dive into the Ramzi Fattouh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Xu

University Health Network

View shared research outputs
Researchain Logo
Decentralizing Knowledge