Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John H. Carlson is active.

Publication


Featured researches published by John H. Carlson.


Infection and Immunity | 2005

Comparative Genomic Analysis of Chlamydia trachomatis Oculotropic and Genitotropic Strains

John H. Carlson; Stephen F. Porcella; Grant McClarty; Harlan D. Caldwell

ABSTRACT Chlamydia trachomatis infection is an important cause of preventable blindness and sexually transmitted disease (STD) in humans. C. trachomatis exists as multiple serovariants that exhibit distinct organotropism for the eye or urogenital tract. We previously reported tissue-tropic correlations with the presence or absence of a functional tryptophan synthase and a putative GTPase-inactivating domain of the chlamydial toxin gene. This suggested that these genes may be the primary factors responsible for chlamydial disease organotropism. To test this hypothesis, the genome of an oculotropic trachoma isolate (A/HAR-13) was sequenced and compared to the genome of a genitotropic (D/UW-3) isolate. Remarkably, the genomes share 99.6% identity, supporting the conclusion that a functional tryptophan synthase enzyme and toxin might be the principal virulence factors underlying disease organotropism. Tarp (translocated actin-recruiting phosphoprotein) was identified to have variable numbers of repeat units within the N and C portions of the protein. A correlation exists between lymphogranuloma venereum serovars and the number of N-terminal repeats. Single-nucleotide polymorphism (SNP) analysis between the two genomes highlighted the minimal genetic variation. A disproportionate number of SNPs were observed within some members of the polymorphic membrane protein (pmp) autotransporter gene family that corresponded to predicted T-cell epitopes that bind HLA class I and II alleles. These results implicate Pmps as novel immune targets, which could advance future chlamydial vaccine strategies. Lastly, a novel target for PCR diagnostics was discovered that can discriminate between ocular and genital strains. This discovery will enhance epidemiological investigations in nations where both trachoma and chlamydial STD are endemic.


Infection and Immunity | 2008

The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor.

John H. Carlson; William M. Whitmire; Deborah D. Crane; Luke Wicke; Kimmo Virtaneva; Daniel E. Sturdevant; John J. Kupko; Stephen F. Porcella; Neysha Martinez-Orengo; Robert A. Heinzen; Laszlo Kari; Harlan D. Caldwell

ABSTRACT Chlamydia trachomatis possesses a cryptic 7.5-kb plasmid of unknown function. Here, we describe a comprehensive molecular and biological characterization of the naturally occurring plasmidless human C. trachomatis strain L2(25667R). We found that despite minimal chromosomal polymorphisms, the LGV strain L2(25667R) was indistinguishable from plasmid-positive strain L2(434) with regard to its in vitro infectivity characteristics such as growth kinetics, plaquing efficiency, and plaque size. The only in vitro phenotypic differences between L2(434) and L2(25667R) were the accumulation of glycogen granules in the inclusion matrix and the lack of the typical intrainclusion Brownian-like movement characteristic of C. trachomatis strains. Conversely, we observed a marked difference between the two strains in their abilities to colonize and infect the female mouse genital tract. The 50% infective dose of plasmidless strain L2(25667R) was 400-fold greater (4 × 106 inclusion-forming units [IFU]) than that of plasmid-bearing strain L2(434) (1 × 104 IFU). Transcriptome analysis of the two strains demonstrated a decrease in the transcript levels of a subset of chromosomal genes for strain L2(25667R). Among those genes was glgA, encoding glycogen synthase, a finding consistent with the failure of L2(25667R) to accumulate glycogen granules. These findings support a primary role for the plasmid in in vivo infectivity and suggest that virulence is controlled, at least in part, by the plasmids ability to regulate the expression of chromosomal genes. Our findings have important implications in understanding a role for the plasmid in the pathogenesis of human infection and disease.


Infection and Immunity | 2013

Chlamydia trachomatis Plasmid-Encoded Pgp4 Is a Transcriptional Regulator of Virulence-Associated Genes

Lihua Song; John H. Carlson; William M. Whitmire; Laszlo Kari; Kimmo Virtaneva; Daniel E. Sturdevant; Heather S. Watkins; Bing Zhou; Gail L. Sturdevant; Stephen F. Porcella; Grant McClarty; Harlan D. Caldwell

ABSTRACT Chlamydia trachomatis causes chronic inflammatory diseases of the eye and genital tract and has global medical importance. The chlamydial plasmid plays an important role in the pathophysiology of these diseases, as plasmid-deficient organisms are highly attenuated. The cryptic plasmid carries noncoding RNAs and eight conserved open reading frames (ORFs). To understand plasmid gene function, we generated plasmid shuttle vectors with deletions in each of the eight ORFs. The individual deletion mutants were used to transform chlamydiae and the transformants were characterized phenotypically and at the transcriptional level. We show that pgp1, -2, -6, and -8 are essential for plasmid maintenance, while the other ORFs can be deleted and the plasmid stably maintained. We further show that a pgp4 knockout mutant exhibits an in vitro phenotype similar to its isogenic plasmidless strain, in terms of abnormal inclusion morphology and lack of glycogen accumulation. Microarray and qRT-PCR analysis revealed that Pgp4 is a transcriptional regulator of plasmid-encoded pgp3 and multiple chromosomal genes, including the glycogen synthase gene glgA, that are likely important in chlamydial virulence. Our findings have major implications for understanding the plasmids role in chlamydial pathogenesis at the molecular level.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Generation of targeted Chlamydia trachomatis null mutants.

Laszlo Kari; Morgan M. Goheen; Linnell B. Randall; Lacey D. Taylor; John H. Carlson; William M. Whitmire; Dezso Virok; Krithika Rajaram; Valéria Endrész; Grant McClarty; David E. Nelson; Harlan D. Caldwell

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that infects hundreds of millions of individuals globally, causing blinding trachoma and sexually transmitted disease. More effective chlamydial control measures are needed, but progress toward this end has been severely hampered by the lack of a tenable chlamydial genetic system. Here, we describe a reverse-genetic approach to create isogenic C. trachomatis mutants. C. trachomatis was subjected to low-level ethyl methanesulfonate mutagenesis to generate chlamydiae that contained less then one mutation per genome. Mutagenized organisms were expanded in small subpopulations that were screened for mutations by digesting denatured and reannealed PCR amplicons of the target gene with the mismatch specific endonuclease CEL I. Subpopulations with mutations were then sequenced for the target region and plaque-cloned if the desired mutation was detected. We demonstrate the utility of this approach by isolating a tryptophan synthase gene (trpB) null mutant that was otherwise isogenic to its parental clone as shown by de novo genome sequencing. The mutant was incapable of avoiding the anti-microbial effect of IFN-γ–induced tryptophan starvation. The ability to genetically manipulate chlamydiae is a major advancement that will enhance our understanding of chlamydial pathogenesis and accelerate the development of new anti-chlamydial therapeutic control measures. Additionally, this strategy could be applied to other medically important bacterial pathogens with no or difficult genetic systems.


Infection and Immunity | 2004

Polymorphisms in the Chlamydia trachomatis Cytotoxin Locus Associated with Ocular and Genital Isolates

John H. Carlson; Scott Hughes; Daniel Hogan; Gordon Cieplak; Daniel E. Sturdevant; Grant McClarty; Harlan D. Caldwell; Robert J. Belland

ABSTRACT Chlamydia trachomatis is a strict human pathogen producing infections that cause medically important chronic inflammatory diseases, such as blinding trachoma and tubal factor infertility. Isolates exist as serotypes that fall into distinct biologic and pathological groups corresponding to differences in infection tissue tropism and invasion properties. Paradoxically, genome sequencing of several diverse strains has revealed a remarkable level of genomic synteny, suggesting that minor genetic differences determine the pathogen host- and tissue-specific infection characteristics. To better understand the genetic basis of chlamydial pathobiologic diversity, we performed comparative DNA-DNA microarray genomic hybridizations with all 15 C. trachomatis serovariants. We found there are few major genetic differences among the 15 serovars. An exception was the cytotoxin locus located in the plasticity zone, a region that exhibited significant polymorphisms among serovars. We therefore sequenced this region from all 15 serovars. The cytotoxin gene was interrupted by extensive mutations and deletions among the different serovars; however, three basic open reading frame motifs were discovered that correlated with noninvasive oculotropic, urogenitotropic, and invasive serovars. Of interest, only noninvasive genitotropic serovars possessed an intact N-terminal portion of the putative toxin gene. This region contains the UDP-glucose binding domain and the glycosyltransferase domain required for enzymatic activity of the clostridial toxin homologs, suggesting a role in urogenital infection or pathogenesis.


The Journal of Infectious Diseases | 2008

Pathogenic Diversity among Chlamydia trachomatis Ocular Strains in Nonhuman Primates Is Affected by Subtle Genomic Variations

Laszlo Kari; William M. Whitmire; John H. Carlson; Deborah D. Crane; Nathalie Reveneau; David E. Nelson; David Mabey; Robin L. Bailey; Martin J. Holland; Grant McClarty; Harlan D. Caldwell

Chlamydia trachomatis is the etiological agent of trachoma, the leading cause of preventable blindness. Trachoma presents distinct clinical syndromes ranging from mild and self-limiting to severe inflammatory disease. The underlying host and pathogen factors responsible for these diverse clinical outcomes are unclear. To assess the role played by pathogen variation in disease outcome, we analyzed the genomes of 4 trachoma strains representative of the 3 major trachoma serotypes, using microarray-based comparative genome sequencing. Outside of ompA, trachoma strains differed primarily in a very small subset of genes (n = 22). These subtle genetic variations were manifested in profound differences in virulence as measured by in vitro growth rate, burst size, plaque morphology, and interferon-gamma sensitivity but most importantly in virulence as shown by ocular infection of nonhuman primates. Our findings are the first to identify genes that correlate with differences in pathogenicity among trachoma strains.


Journal of Immunology | 2009

Chlamydia trachomatis Native Major Outer Membrane Protein Induces Partial Protection in Nonhuman Primates: Implication for a Trachoma Transmission-Blocking Vaccine

Laszlo Kari; William M. Whitmire; Deborah D. Crane; Nathalie Reveneau; John H. Carlson; Morgan M. Goheen; Ellena M. Peterson; Sukumar Pal; Luis M. de la Maza; Harlan D. Caldwell

A vaccine is likely the most effective strategy for controlling human chlamydial infections. Recent studies have shown immunization with Chlamydia muridarum major outer membrane protein (MOMP) can induce significant protection against infection and disease in mice if its native trimeric structure is preserved (nMOMP). The objective of this study was to investigate the immunogenicity and vaccine efficacy of Chlamydia trachomatis nMOMP in a nonhuman primate trachoma model. Cynomolgus monkeys (Macaca fascicularis) were immunized systemically with nMOMP, and monkeys were challenged ocularly. Immunization induced high serum IgG and IgA ELISA Ab titers, with Abs displaying high strain-specific neutralizing activity. The PBMCs of immunized monkeys produced a broadly cross-reactive, Ag-specific IFN-γ response equivalent to that induced by experimental infection. Immunized monkeys exhibited a significant decrease in infectious burden during the early peak shedding periods (days 3–14). However, at later time points, they exhibited no difference from control animals in either burden or duration of infection. Immunization had no effect on the progression of ocular disease. These results show that systemically administered nMOMP is highly immunogenic in nonhuman primates and elicits partially protective immunity against ocular chlamydial challenge. This is the first time a subunit vaccine has shown a significant reduction in ocular shedding in nonhuman primates. A partially protective vaccine, particularly one that reduces infectious burden after primary infection of children, could interrupt the natural trachoma reinfection cycle. This would have a beneficial effect on the transmission between children and sensitized adults which drives blinding inflammatory disease.


Molecular Microbiology | 1995

Mutational activation of the Cpx signal transduction pathway of Escherichia coli suppresses the toxicity conferred by certain envelope‐associated stresses

Christine L. Cosma; Paul N. Danese; John H. Carlson; Thomas J. Silhavy; William B. Snyder

The processing‐defective outer membrane porin protein LamBA23D (Carlson and Silhavy, 1993) and a tripartite fusion protein, LamB‐LacZ‐PhoA (Snyder and Silhavy, 1995), are both secreted across the cytoplasmic membrane of Escherichia coli, where they exert an extracytoplasmic toxicity. Suppressors of these toxicities map to a previously characterized gene, cpxA, that encodes the sensor kinase protein of a two‐component regulatory system. These activated cpxA alleles, designated as cpxA*, stimulate transcription of the periplasmic protease DegP (Danese et aL, 1995), which in turn catalyses degradation of the tripartite fusion protein. In contrast, degradation of precursor LamBA23D is not significantly stimulated in a cpxA* suppressor background. In fact, increased levels of DegP in a wild‐type background stabilized this protein. While a functional degP gene is required for full cpxaA* ‐mediated suppression of both toxic envelope proteins, residual suppression is seen in cpxA*degP::Tn10 double mutants. Furthermore, cpxA* mutations suppress the toxicity conferred by the LamB‐LacZ hybrid protein, which exerts its effects in the cytoplasm, sequestered from DegP. Together, these observations suggest that the activated Cpx pathway regulates additional downstream targets that contribute to suppression. A subset of these targets may constitute a regulon involved in relieving extracytoplasmic and/or secretion‐related stress.


Infection and Immunity | 2010

Frameshift Mutations in a Single Novel Virulence Factor Alter the In Vivo Pathogenicity of Chlamydia trachomatis for the Female Murine Genital Tract

Gail L. Sturdevant; Laszlo Kari; Donald J. Gardner; Norma Olivares-Zavaleta; Linnell B. Randall; William M. Whitmire; John H. Carlson; Morgan M. Goheen; Elizabeth M. Selleck; Craig Martens; Harlan D. Caldwell

ABSTRACT Chlamydia trachomatis is a human pathogen of global importance. An obstacle to studying the pathophysiology of human chlamydial disease is the lack of a suitable murine model of C. trachomatis infection. Mice are less susceptible to infection with human isolates due in part to innate mouse-specific host defense mechanisms to which human strains are sensitive. Another possible factor that influences the susceptibility of mice to infection is that human isolates are commonly cultivated in vitro prior to infection of mice; therefore, virulence genes could be lost as a consequence of negative selective pressure. We tested this hypothesis by infecting innate immunity-deficient C3H/HeJ female mice intravaginally with a human serovar D urogenital isolate that had undergone multiple in vitro passages. We observed early and late infection clearance phenotypes. Strains of each phenotype were isolated and then used to reinfect naïve mice. Following infection, the late-clearance strain was significantly more virulent. It caused unvarying infections of much longer durations with greater infectious burdens that naturally ascended to the upper genital tract, causing salpingitis. Despite contrasting in vivo virulence characteristics, the strains exhibited no differences in the results of in vitro infectivity assays or sensitivities to gamma interferon. Genome sequencing of the strains revealed mutations that localized to a single gene (CT135), implicating it as a critical virulence factor. Mutations in CT135 were not unique to serovar D but were also found in multiple oculogenital reference strains. Our findings provide new information about the pathogenomics of chlamydial infection and insights for improving murine models of infection using human strains.


Infection and Immunity | 2009

Chlamydia trachomatis Polymorphic Membrane Protein D Is an Oligomeric Autotransporter with a Higher-Order Structure

Kena A. Swanson; Lacey D. Taylor; Shaun D. Frank; Gail L. Sturdevant; Elizabeth R. Fischer; John H. Carlson; William M. Whitmire; Harlan D. Caldwell

ABSTRACT Chlamydia trachomatis is a globally important obligate intracellular bacterial pathogen that is a leading cause of sexually transmitted disease and blinding trachoma. Effective control of these diseases will likely require a preventative vaccine. C. trachomatis polymorphic membrane protein D (PmpD) is an attractive vaccine candidate as it is conserved among C. trachomatis strains and is a target of broadly cross-reactive neutralizing antibodies. We show here that immunoaffinity-purified native PmpD exists as an oligomer with a distinct 23-nm flower-like structure. Two-dimensional blue native-sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses showed that the oligomers were composed of full-length PmpD (p155) and two proteolytically processed fragments, the p73 passenger domain (PD) and the p82 translocator domain. We also show that PmpD undergoes an infection-dependent proteolytic processing step late in the growth cycle that yields a soluble extended PD (p111) that was processed into a p73 PD and a novel p30 fragment. Interestingly, soluble PmpD peptides possess putative eukaryote-interacting functional motifs, implying potential secondary functions within or distal to infected cells. Collectively, our findings show that PmpD exists as two distinct forms, a surface-associated oligomer exhibiting a higher-order flower-like structure and a soluble form restricted to infected cells. We hypothesize that PmpD is a multifunctional virulence factor important in chlamydial pathogenesis and could represent novel vaccine or drug targets for the control of human chlamydial infections.

Collaboration


Dive into the John H. Carlson's collaboration.

Top Co-Authors

Avatar

Harlan D. Caldwell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William M. Whitmire

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Grant McClarty

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

Gail L. Sturdevant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel E. Sturdevant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kimmo Virtaneva

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Laszlo Kari

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lihua Song

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Deborah D. Crane

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge