Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kimmo Virtaneva is active.

Publication


Featured researches published by Kimmo Virtaneva.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Virulence control in group A Streptococcus by a two-component gene regulatory system: Global expression profiling and in vivo infection modeling

Morag R. Graham; Laura M. Smoot; Cristi A. Lux Migliaccio; Kimmo Virtaneva; Daniel E. Sturdevant; Stephen F. Porcella; Michael J. Federle; Gerald J. Adams; June R. Scott; James M. Musser

Two-component gene regulatory systems composed of a membrane-bound sensor and cytoplasmic response regulator are important mechanisms used by bacteria to sense and respond to environmental stimuli. Group A Streptococcus, the causative agent of mild infections and life-threatening invasive diseases, produces many virulence factors that promote survival in humans. A two-component regulatory system, designated covRS (cov, control of virulence; csrRS), negatively controls expression of five proven or putative virulence factors (capsule, cysteine protease, streptokinase, streptolysin S, and streptodornase). Inactivation of covRS results in enhanced virulence in mouse models of invasive disease. Using DNA microarrays and quantitative RT-PCR, we found that CovR influences transcription of 15% (n = 271) of all chromosomal genes, including many that encode surface and secreted proteins mediating host–pathogen interactions. CovR also plays a central role in gene regulatory networks by influencing expression of genes encoding transcriptional regulators, including other two-component systems. Differential transcription of genes influenced by covR also was identified in mouse soft-tissue infection. This analysis provides a genome-scale overview of a virulence gene network in an important human pathogen and adds insight into the molecular mechanisms used by group A Streptococcus to interact with the host, promote survival, and cause disease.


The Journal of Infectious Diseases | 2005

Evolutionary Origin and Emergence of a Highly Successful Clone of Serotype M1 Group A Streptococcus Involved Multiple Horizontal Gene Transfer Events

Paul Sumby; Steve Porcella; Andres G. Madrigal; Kent D. Barbian; Kimmo Virtaneva; Stacy M. Ricklefs; Daniel E. Sturdevant; Morag R. Graham; Jaana Vuopio-Varkila; Nancy P. Hoe; James M. Musser

To better understand the molecular events involved in the origin of new pathogenic bacteria, we studied the evolution of a highly virulent clone of serotype M1 group A Streptococcus (GAS). Genomic, DNA-DNA microarray, and single-nucleotide polymorphism analyses indicated that this clone evolved through a series of horizontal gene transfer events that involved (1) the acquisition of prophages encoding streptococcal pyrogenic exotoxin A and extracellular DNases and (2) the reciprocal recombination of a 36-kb chromosomal region encoding the extracellular toxins NAD+-glycohydrolase (NADase) and streptolysin O (SLO). These gene transfer events were associated with significantly increased production of SLO and NADase. Virtual identity in the 36-kb region present in contemporary serotype M1 and M12 isolates suggests that a serotype M12 strain served as the donor of this region. Multiple horizontal gene transfer events were a crucial factor in the evolutionary origin and emergence of a very abundant contemporary clone of serotype M1 GAS.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Host cell-free growth of the Q fever bacterium Coxiella burnetii

Anders Omsland; Diane C. Cockrell; Dale Howe; Elizabeth R. Fischer; Kimmo Virtaneva; Daniel E. Sturdevant; Stephen F. Porcella; Robert A. Heinzen

The inability to propagate obligate intracellular pathogens under axenic (host cell-free) culture conditions imposes severe experimental constraints that have negatively impacted progress in understanding pathogen virulence and disease mechanisms. Coxiella burnetii, the causative agent of human Q (Query) fever, is an obligate intracellular bacterial pathogen that replicates exclusively in an acidified, lysosome-like vacuole. To define conditions that support C. burnetii growth, we systematically evaluated the organisms metabolic requirements using expression microarrays, genomic reconstruction, and metabolite typing. This led to development of a complex nutrient medium that supported substantial growth (approximately 3 log10) of C. burnetii in a 2.5% oxygen environment. Importantly, axenically grown C. burnetii were highly infectious for Vero cells and exhibited developmental forms characteristic of in vivo grown organisms. Axenic cultivation of C. burnetii will facilitate studies of the organisms pathogenesis and genetics and aid development of Q fever preventatives such as an effective subunit vaccine. Furthermore, the systematic approach used here may be broadly applicable to development of axenic media that support growth of other medically important obligate intracellular pathogens.


Cellular Microbiology | 2009

Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages

Tara D. Wehrly; Audrey Chong; Kimmo Virtaneva; Dan E. Sturdevant; Robert Child; Jessica A. Edwards; Dedeke Brouwer; Vinod Nair; Elizabeth R. Fischer; Luke Wicke; Alissa J. Curda; John J. Kupko; Craig Martens; Deborah D. Crane; Catharine M. Bosio; Stephen F. Porcella; Jean Celli

The highly infectious bacterium Francisella tularensis is a facultative intracellular pathogen, whose virulence requires proliferation inside host cells, including macrophages. Here we have performed a global transcriptional profiling of the highly virulent F. tularensis ssp. tularensis Schu S4 strain during its intracellular cycle within primary murine macrophages, to characterize its intracellular biology and identify pathogenic determinants based on their intracellular expression profiles. Phagocytosed bacteria rapidly responded to their intracellular environment and subsequently altered their transcriptional profile. Differential gene expression profiles were revealed that correlated with specific intracellular locale of the bacteria. Upregulation of general and oxidative stress response genes was a hallmark of the early phagosomal and late endosomal stages, while induction of transport and metabolic genes characterized the cytosolic replication stage. Expression of the Francisella Pathogenicity Island (FPI) genes, which are required for intracellular proliferation, increased during the intracellular cycle. Similarly, 27 chromosomal loci encoding putative hypothetical, secreted, outer membrane proteins or transcriptional regulators were identified as upregulated. Among these, deletion of FTT0383, FTT0369c or FTT1676 abolished the ability of Schu S4 to survive or proliferate intracellularly and cause lethality in mice, therefore identifying novel determinants of Francisella virulence from their intracellular expression profile.


Infection and Immunity | 2008

The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor.

John H. Carlson; William M. Whitmire; Deborah D. Crane; Luke Wicke; Kimmo Virtaneva; Daniel E. Sturdevant; John J. Kupko; Stephen F. Porcella; Neysha Martinez-Orengo; Robert A. Heinzen; Laszlo Kari; Harlan D. Caldwell

ABSTRACT Chlamydia trachomatis possesses a cryptic 7.5-kb plasmid of unknown function. Here, we describe a comprehensive molecular and biological characterization of the naturally occurring plasmidless human C. trachomatis strain L2(25667R). We found that despite minimal chromosomal polymorphisms, the LGV strain L2(25667R) was indistinguishable from plasmid-positive strain L2(434) with regard to its in vitro infectivity characteristics such as growth kinetics, plaquing efficiency, and plaque size. The only in vitro phenotypic differences between L2(434) and L2(25667R) were the accumulation of glycogen granules in the inclusion matrix and the lack of the typical intrainclusion Brownian-like movement characteristic of C. trachomatis strains. Conversely, we observed a marked difference between the two strains in their abilities to colonize and infect the female mouse genital tract. The 50% infective dose of plasmidless strain L2(25667R) was 400-fold greater (4 × 106 inclusion-forming units [IFU]) than that of plasmid-bearing strain L2(434) (1 × 104 IFU). Transcriptome analysis of the two strains demonstrated a decrease in the transcript levels of a subset of chromosomal genes for strain L2(25667R). Among those genes was glgA, encoding glycogen synthase, a finding consistent with the failure of L2(25667R) to accumulate glycogen granules. These findings support a primary role for the plasmid in in vivo infectivity and suggest that virulence is controlled, at least in part, by the plasmids ability to regulate the expression of chromosomal genes. Our findings have important implications in understanding a role for the plasmid in the pathogenesis of human infection and disease.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes

Jovanka M. Voyich; Daniel E. Sturdevant; Kevin R. Braughton; Scott D. Kobayashi; Benfang Lei; Kimmo Virtaneva; David W. Dorward; James M. Musser; Frank R. DeLeo

Group A Streptococcus (GAS) evades polymorphonuclear leukocyte (PMN) phagocytosis and killing to cause human disease, including pharyngitis and necrotizing fasciitis (flesh-eating syndrome). We show that GAS genes differentially regulated during phagocytic interaction with human PMNs comprise a global pathogen-protective response to innate immunity. GAS prophage genes and genes involved in virulence, oxidative stress, cell wall biosynthesis, and gene regulation were up-regulated during PMN phagocytosis. Genes encoding novel secreted proteins were up-regulated, and the proteins were produced during human GAS infections. We discovered an essential role for the Ihk-Irr two-component regulatory system in evading PMN-mediated killing and promoting host–cell lysis, processes that would facilitate GAS pathogenesis. Importantly, the irr gene was highly expressed during human GAS pharyngitis. We conclude that a complex pathogen genetic program circumvents human innate immunity to promote disease. The gene regulatory program revealed by our studies identifies previously undescribed potential vaccine antigens and targets for therapeutic interventions designed to control GAS infections.


American Journal of Pathology | 2005

Group A Streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival strategies

Morag R. Graham; Kimmo Virtaneva; Stephen F. Porcella; William T. Barry; Brian B. Gowen; Claire R. Johnson; Fred A. Wright; James M. Musser

The molecular basis for bacterial responses to host signals during natural infections is poorly understood. The gram-positive bacterial pathogen group A Streptococcus (GAS) causes human mucosal, skin, and life-threatening systemic infections. During the transition from a throat or skin infection to an invasive infection, GAS must adapt to changing environments and host factors. To better understand how GAS adapts, we used transcript profiling and functional analysis to investigate the transcriptome of a wild-type serotype M1 GAS strain in human blood. Global changes in GAS gene expression occur rapidly in response to human blood exposure. Increased transcription was observed for many genes that likely enhance bacterial survival, including those encoding superantigens and host-evasion proteins regulated by a multiple gene activator called Mga. GAS also coordinately expressed genes involved in proteolysis, transport, and catabolism of oligopeptides to obtain amino acids in this protein-rich host environment. Comparison of the transcriptome of the wild-type strain to that of an isogenic deletion mutant (DeltacovR) mutated in the two-component regulatory system designated CovR-CovS reinforced the hypothesis that CovR-CovS has an important role linking key biosynthetic, catabolic, and virulence functions during transcriptome restructuring. Taken together, the data provide crucial insights into strategies used by pathogenic bacteria for thwarting host defenses and surviving in human blood.


Infection and Immunity | 2013

Chlamydia trachomatis Plasmid-Encoded Pgp4 Is a Transcriptional Regulator of Virulence-Associated Genes

Lihua Song; John H. Carlson; William M. Whitmire; Laszlo Kari; Kimmo Virtaneva; Daniel E. Sturdevant; Heather S. Watkins; Bing Zhou; Gail L. Sturdevant; Stephen F. Porcella; Grant McClarty; Harlan D. Caldwell

ABSTRACT Chlamydia trachomatis causes chronic inflammatory diseases of the eye and genital tract and has global medical importance. The chlamydial plasmid plays an important role in the pathophysiology of these diseases, as plasmid-deficient organisms are highly attenuated. The cryptic plasmid carries noncoding RNAs and eight conserved open reading frames (ORFs). To understand plasmid gene function, we generated plasmid shuttle vectors with deletions in each of the eight ORFs. The individual deletion mutants were used to transform chlamydiae and the transformants were characterized phenotypically and at the transcriptional level. We show that pgp1, -2, -6, and -8 are essential for plasmid maintenance, while the other ORFs can be deleted and the plasmid stably maintained. We further show that a pgp4 knockout mutant exhibits an in vitro phenotype similar to its isogenic plasmidless strain, in terms of abnormal inclusion morphology and lack of glycogen accumulation. Microarray and qRT-PCR analysis revealed that Pgp4 is a transcriptional regulator of plasmid-encoded pgp3 and multiple chromosomal genes, including the glycogen synthase gene glgA, that are likely important in chlamydial virulence. Our findings have major implications for understanding the plasmids role in chlamydial pathogenesis at the molecular level.


Journal of Clinical Investigation | 2014

Endogenous intrahepatic IFNs and association with IFN-free HCV treatment outcome

Eric G. Meissner; David Wu; Anu Osinusi; Dimitra Bon; Kimmo Virtaneva; Dan E. Sturdevant; Steve Porcella; Honghui Wang; Eva Herrmann; John G. McHutchison; Michael A. Polis; Stephen M. Hewitt; Ludmila Prokunina-Olsson; Henry Masur; Anthony S. Fauci; Shyamasundaran Kottilil

BACKGROUND. Hepatitis C virus (HCV) infects approximately 170 million people worldwide and may lead to cirrhosis and hepatocellular carcinoma in chronically infected individuals. Treatment is rapidly evolving from IFN-α-based therapies to IFN-α-free regimens that consist of directly acting antiviral agents (DAAs), which demonstrate improved efficacy and tolerability in clinical trials. Virologic relapse after DAA therapy is a common cause of treatment failure; however, it is not clear why relapse occurs or whether certain individuals are more prone to recurrent viremia. METHODS. We conducted a clinical trial using the DAA sofosbuvir plus ribavirin (SOF/RBV) and performed detailed mRNA expression analysis in liver and peripheral blood from patients who achieved either a sustained virologic response (SVR) or relapsed. RESULTS. On-treatment viral clearance was accompanied by rapid downregulation of IFN-stimulated genes (ISGs) in liver and blood, regardless of treatment outcome. Analysis of paired pretreatment and end of treatment (EOT) liver biopsies from SVR patients showed that viral clearance was accompanied by decreased expression of type II and III IFNs, but unexpectedly increased expression of the type I IFN IFNA2. mRNA expression of ISGs was higher in EOT liver biopsies of patients who achieved SVR than in patients who later relapsed. CONCLUSION. These results suggest that restoration of type I intrahepatic IFN signaling by EOT may facilitate HCV eradication and prevention of relapse upon withdrawal of SOF/RBV. TRIAL REGISTRATION. ClinicalTrials.gov NCT01441180.


Infection and Immunity | 2008

Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa.

Damon W. Ellison; Tina R. Clark; Daniel E. Sturdevant; Kimmo Virtaneva; Stephen F. Porcella; Ted Hackstadt

ABSTRACT Rickettsia rickettsii is an obligate intracellular pathogen that is the causative agent of Rocky Mountain spotted fever. To identify genes involved in the virulence of R. rickettsii, the genome of an avirulent strain, R. rickettsii Iowa, was sequenced and compared to the genome of the virulent strain R. rickettsii Sheila Smith. R. rickettsii Iowa is avirulent in a guinea pig model of infection and displays altered plaque morphology with decreased lysis of infected host cells. Comparison of the two genomes revealed that R. rickettsii Iowa and R. rickettsii Sheila Smith share a high degree of sequence identity. A whole-genome alignment comparing R. rickettsii Iowa to R. rickettsii Sheila Smith revealed a total of 143 deletions for the two strains. A subsequent single-nucleotide polymorphism (SNP) analysis comparing Iowa to Sheila Smith revealed 492 SNPs for the two genomes. One of the deletions in R. rickettsii Iowa truncates rompA, encoding a major surface antigen (rickettsial outer membrane protein A [rOmpA]) and member of the autotransporter family, 660 bp from the start of translation. Immunoblotting and immunofluorescence confirmed the absence of rOmpA from R. rickettsii Iowa. In addition, R. rickettsii Iowa is defective in the processing of rOmpB, an autotransporter and also a major surface antigen of spotted fever group rickettsiae. Disruption of rompA and the defect in rOmpB processing are most likely factors that contribute to the avirulence of R. rickettsii Iowa. Genomic differences between the two strains do not significantly alter gene expression as analysis of microarrays revealed only four differences in gene expression between R. rickettsii Iowa and R. rickettsii strain R. Although R. rickettsii Iowa does not cause apparent disease, infection of guinea pigs with this strain confers protection against subsequent challenge with the virulent strain R. rickettsii Sheila Smith.

Collaboration


Dive into the Kimmo Virtaneva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel E. Sturdevant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Craig Martens

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James M. Musser

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Kishore Kanakabandi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John H. Carlson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David Greenberg

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morag R. Graham

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert A. Heinzen

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge