Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John H. J. Wokke is active.

Publication


Featured researches published by John H. J. Wokke.


Nature Genetics | 2009

Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis

Michael A. van Es; Jan H. Veldink; Christiaan G.J. Saris; Hylke M. Blauw; Paul W.J. van Vught; Anna Birve; Robin Lemmens; Helenius J. Schelhaas; Ewout J.N. Groen; Mark H. B. Huisman; Anneke J. van der Kooi; Marianne de Visser; Caroline Dahlberg; Karol Estrada; Fernando Rivadeneira; Albert Hofman; Machiel J. Zwarts; Perry T.C. van Doormaal; Dan Rujescu; Eric Strengman; Ina Giegling; Pierandrea Muglia; Barbara Tomik; Agnieszka Slowik; André G. Uitterlinden; Corinna Hendrich; Stefan Waibel; Thomas Meyer; Albert C. Ludolph; Jonathan D. Glass

We conducted a genome-wide association study among 2,323 individuals with sporadic amyotrophic lateral sclerosis (ALS) and 9,013 control subjects and evaluated all SNPs with P < 1.0 × 10−4 in a second, independent cohort of 2,532 affected individuals and 5,940 controls. Analysis of the genome-wide data revealed genome-wide significance for one SNP, rs12608932, with P = 1.30 × 10−9. This SNP showed robust replication in the second cohort (P = 1.86 × 10−6), and a combined analysis over the two stages yielded P = 2.53 × 10−14. The rs12608932 SNP is located at 19p13.3 and maps to a haplotype block within the boundaries of UNC13A, which regulates the release of neurotransmitters such as glutamate at neuromuscular synapses. Follow-up of additional SNPs showed genome-wide significance for two further SNPs (rs2814707, with P = 7.45 × 10−9, and rs3849942, with P = 1.01 × 10−8) in the combined analysis of both stages. These SNPs are located at chromosome 9p21.2, in a linkage region for familial ALS with frontotemporal dementia found previously in several large pedigrees.


Annals of Neurology | 2003

A randomized sequential trial of creatine in amyotrophic lateral sclerosis

G. J. Groeneveld; Jan H. Veldink; Ingeborg van der Tweel; Sandra Kalmijn; Cornelis Beijer; Marianne de Visser; John H. J. Wokke; Hessel Franssen; Leonard H. van den Berg

Amyotrophic lateral sclerosis (ALS) is a fatal disease with no cure. In a transgenic mouse model of ALS, creatine monohydrate showed a promising increase in survival. We performed a double‐blind, placebo‐controlled, sequential clinical trial to assess the effect of creatine monohydrate on survival and disease progression in patients with ALS. Between June 2000 and December 2001, 175 patients with probable, probable‐laboratory supported, or definite ALS were randomly assigned to receive either creatine monohydrate or placebo 10gm daily. A sequential trial design was used with death, persistent assisted ventilation, or tracheostomy as primary end points. Secondary outcome measurements were rate of decline of isometric arm muscle strength, forced vital capacity, functional status, and quality of life. The trial was stopped when the null hypothesis of indifference was accepted. Creatine did not affect survival (cumulative survival probability of 0.70 in the creatine group vs 0.68 in the placebo group at 12 months, and 0.52 in the creatine group vs 0.47 in the placebo group at 16 months), or the rate of decline of functional measurements. Creatine intake did not cause important adverse reactions. This placebo‐controlled trial did not find evidence of a beneficial effect of creatine monohydrate on survival or disease progression in patients with ALS. Ann Neurol 2003;53:437–445


Nature Genetics | 2008

Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis

Michael A. van Es; Paul W.J. van Vught; Hylke M. Blauw; Lude Franke; Christiaan G.J. Saris; Ludo Van Den Bosch; Sonja W. de Jong; Vianney de Jong; Frank Baas; Ruben van 't Slot; Robin Lemmens; Helenius J. Schelhaas; Anna Birve; K Sleegers; Christine Van Broeckhoven; Jennifer C. Schymick; Bryan J. Traynor; John H. J. Wokke; Cisca Wijmenga; Wim Robberecht; Peter Andersen; Jan H. Veldink; Roel A. Ophoff; Leonard H. van den Berg

We identified a SNP in the DPP6 gene that is consistently strongly associated with susceptibility to amyotrophic lateral sclerosis (ALS) in different populations of European ancestry, with an overall P value of 5.04 × 10−8 in 1,767 cases and 1,916 healthy controls and with an odds ratio of 1.30 (95% confidence interval (CI) of 1.18–1.43). Our finding is the first report of a genome-wide significant association with sporadic ALS and may be a target for future functional studies.


Lancet Neurology | 2007

ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study

Michael A. van Es; Paul W.J. van Vught; Hylke M. Blauw; Lude Franke; Christiaan G.J. Saris; Peter Andersen; Ludo Van Den Bosch; Sonja W. de Jong; Ruben van 't Slot; Anna Birve; Robin Lemmens; Vianney de Jong; Frank Baas; Helenius J. Schelhaas; Kristel Sleegers; Christine Van Broeckhoven; John H. J. Wokke; Cisca Wijmenga; Wim Robberecht; Jan H. Veldink; Roel A. Ophoff; Leonard H. van den Berg

BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating disease characterised by progressive degeneration of motor neurons in the brain and spinal cord. ALS is thought to be multifactorial, with both environmental and genetic causes. Our aim was to identify genetic variants that predispose for sporadic ALS. METHODS We did a three-stage genome-wide association study in 461 patients with ALS and 450 controls from The Netherlands, using Illumina 300K single-nucleotide polymorphism (SNP) chips. The SNPs that were most strongly associated with ALS were analysed in a further 876 patients and 906 controls in independent sample series from The Netherlands, Belgium, and Sweden. We also investigated the possible pathological functions of associated genes using expression data from whole blood of patients with sporadic ALS and of control individuals who were included in the genome-wide association study. FINDINGS A genetic variant in the inositol 1,4,5-triphosphate receptor 2 gene (ITPR2) was associated with ALS (p=0.012 after Bonferroni correction). Combined analysis of all samples (1337 patients and 1356 controls) confirmed this association (p=3.28x10(-6), odds ratio 1.58, 95% CI 1.30-1.91). ITPR2 expression was greater in the peripheral blood of 126 ALS patients than in that of 126 healthy controls (p=0.00016). INTERPRETATION Genetic variation in ITPR2 is a susceptibility factor for ALS. ITPR2 is a strong candidate susceptibility gene for ALS because it is involved in glutamate-mediated neurotransmission, is one of the main regulators of intracellular calcium concentrations, and has an important role in apoptosis.


Neuromuscular Disorders | 2003

Sexual differences in onset of disease and response to exercise in a transgenic model of ALS

Jan H. Veldink; P.R. Bär; E.A.J. Joosten; M. Otten; John H. J. Wokke; L. H. van den Berg

Transgenic mice that overexpress the mutant human SOD1 gene (hSOD1) serve as an animal model for amyotrophic lateral sclerosis (ALS). Age and sex are recognized as risk factors for ALS, but physical activity remains controversial. Therefore, we investigated the effect of exercise on the phenotype of male and female hSOD1 mice. Onset of disease, progression of disease and survival were measured in low-copy and high-copy hSOD1 mice that were randomized to an exercise or sedentary group. We found that onset of disease was different for the two sexes: significantly earlier in male than in female hSOD1 mice. Exercise delayed the onset of disease in female but not in male hSOD1 mice. Also, exercise delayed the total survival time in female high-copy hSOD1 mice. Muscle morphometry and motor neuron counts were similar in all experimental groups at the end of training. Sedentary female hSOD1 mice showed more frequently irregular estrous cycles suggesting a higher estrogen exposure in exercising female mice. These results suggest a possible neuroprotective effect of female sex hormones and support the view that ALS patients should not avoid regular exercise.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis.

John Landers; Judith Melki; Vincent Meininger; Jonathan D. Glass; Leonard H. van den Berg; Michael A. van Es; Peter Sapp; Paul W.J. van Vught; Diane McKenna-Yasek; Hylke M. Blauw; Ting Jan Cho; Meraida Polak; Lijia Shi; Anne Marie Wills; Wendy J. Broom; Nicola Ticozzi; Vincenzo Silani; Aslihan Ozoguz; Ildefonso Rodriguez-Leyva; Jan H. Veldink; Adrian J. Ivinson; Christiaan G.J. Saris; Betsy A. Hosler; Alayna Barnes-Nessa; Nicole R. Couture; John H. J. Wokke; Thomas J. Kwiatkowski; Roel A. Ophoff; Simon Cronin; Orla Hardiman

Amyotrophic lateral sclerosis is a degenerative disorder of motor neurons that typically develops in the 6th decade and is uniformly fatal, usually within 5 years. To identify genetic variants associated with susceptibility and phenotypes in sporadic ALS, we performed a genome-wide SNP analysis in sporadic ALS cases and controls. A total of 288,357 SNPs were screened in a set of 1,821 sporadic ALS cases and 2,258 controls from the U.S. and Europe. Survival analysis was performed using 1,014 deceased sporadic cases. Top results for susceptibility were further screened in an independent sample set of 538 ALS cases and 556 controls. SNP rs1541160 within the KIFAP3 gene (encoding a kinesin-associated protein) yielded a genome-wide significant result (P = 1.84 × 10−8) that withstood Bonferroni correction for association with survival. Homozygosity for the favorable allele (CC) conferred a 14.0 months survival advantage. Sequence, genotypic and functional analyses revealed that there is linkage disequilibrium between rs1541160 and SNP rs522444 within the KIFAP3 promoter and that the favorable alleles of rs1541160 and rs522444 correlate with reduced KIFAP3 expression. No SNPs were associated with risk of sporadic ALS, site of onset, or age of onset. We have identified a variant within the KIFAP3 gene that is associated with decreased KIFAP3 expression and increased survival in sporadic ALS. These findings support the view that genetic factors modify phenotypes in this disease and that cellular motor proteins are determinants of motor neuron viability.


Annals of Neurology | 2000

Multifocal motor neuropathy : Diagnostic criteria that predict the response to immunoglobulin treatment

R. M. Van den Berg-Vos; Hessel Franssen; John H. J. Wokke; H. W. Van Es; L. H. van den Berg

As multifocal motor neuropathy (MMN) is a potentially treatable disorder, its differentiation from lower motor neuron disease is important. Evidence of conduction block (CB) is considered one of the relevant criteria for the diagnosis of MMN. Strict criteria for CB may lead to underdiagnosis of MMN, however. Using a standardized examination, we studied the clinical, laboratory, and electrophysiological characteristics of 37 patients presenting with a lower motor neuron disorder and electrophysiological features compatible with segmental demyelination. We propose a set of clinical, laboratory, and electrophysiological criteria for the diagnosis of MMN, which has been verified by follow‐up and response to treatment with intravenous immunoglobulins. Based on the clinical, laboratory, and electrodiagnostic features, 21 patients were diagnosed with definite MMN (17 responders), 7 were diagnosed with probable MMN (5 responders), and 9 were diagnosed with possible MMN (1 responder). Age at onset, the number of affected limb regions, and the number of patients with a creatine kinase level greater than 180 U/L were significantly lower in responders than in nonresponders. Elevated anti‐GM1 antibodies and definite CB were found significantly more often in responders. The proposed diagnostic criteria may be useful in clinical practice and therapeutic trials. Ann Neurol 2000;48:919–926


Amyotrophic Lateral Sclerosis | 2008

Exposure to chemicals and metals and risk of amyotrophic lateral sclerosis: A systematic review

Nadia A. Sutedja; Jan H. Veldink; K. Fischer; Hans Kromhout; Dick Heederik; Mark H. B. Huisman; John H. J. Wokke; Leonard H. van den Berg

Environmental exposure to chemicals and metals may contribute to the risk of sporadic amyotrophic lateral sclerosis (ALS). Two systematic reviews of the literature on these topics performed according to the well-established MOOSE guidelines are presented. Literature cited in MEDLINE, EMBASE, CINAHL, and Cochrane databases (up to March 2007) as well as references of relevant articles were screened for case-control or cohort studies investigating the associations between sporadic ALS and exposure to chemical agents or metals. Methodology of selected studies was appraised according to Armons classification system for ALS risk factor studies as well as a newly developed classification system for quality of exposure assessment. Seven of the 38 studies concerning exposure to chemicals and three of the 50 studies concerning exposure to metals fulfilled the validity criteria. In two independent studies meeting the validity criteria, a significant association with increased ALS risk was reported for exposure to pesticides. This systematic review demonstrated the difficulty in attaining a high level of evidence due to lack of high quality of methodological and exposure assessment components. Although pesticide exposure was identified as candidate risk factor, more well-designed studies are needed to provide a definitive answer about exogenous factors of ALS.


Muscle & Nerve | 2008

Clinical features of late-onset Pompe disease: a prospective cohort study.

John H. J. Wokke; Diana M. Escolar; Alan Pestronk; Kenneth M. Jaffe; Gregory T. Carter; Leonard H. van den Berg; Julaine M. Florence; J. Mayhew; Alison Skrinar; Deyanira Corzo; P. Laforêt

The objective of this 12‐month study was to describe the clinical features of late‐onset Pompe disease and identify appropriate outcome measures for use in clinical trials. Assessments included quantitative muscle testing (QMT), functional activities (FAA), 6‐min walk test (6MWT), and pulmonary function testing (PFT). Percent predicted values indicated quantifiable upper and lower extremity weakness, impaired walking ability, and respiratory muscle weakness. Significant declines in arm and leg strength and pulmonary function were observed during the study period. The outcome measures were demonstrated to be safe and reliable. Symptom duration was identified as the best predictor of the extent of skeletal and respiratory muscle weakness. Muscle Nerve 38: 1236–1245, 2008


BMC Genomics | 2009

Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients

Christiaan G.J. Saris; Steve Horvath; Paul W.J. van Vught; Michael A. van Es; Hylke M. Blauw; Tova F Fuller; Peter Langfelder; Joseph DeYoung; John H. J. Wokke; Jan H. Veldink; Leonard H. van den Berg; Roel A. Ophoff

BackgroundAmyotrophic Lateral Sclerosis (ALS) is a lethal disorder characterized by progressive degeneration of motor neurons in the brain and spinal cord. Diagnosis is mainly based on clinical symptoms, and there is currently no therapy to stop the disease or slow its progression. Since access to spinal cord tissue is not possible at disease onset, we investigated changes in gene expression profiles in whole blood of ALS patients.ResultsOur transcriptional study showed dramatic changes in blood of ALS patients; 2,300 probes (9.4%) showed significant differential expression in a discovery dataset consisting of 30 ALS patients and 30 healthy controls. Weighted gene co-expression network analysis (WGCNA) was used to find disease-related networks (modules) and disease related hub genes. Two large co-expression modules were found to be associated with ALS. Our findings were replicated in a second (30 patients and 30 controls) and third dataset (63 patients and 63 controls), thereby demonstrating a highly significant and consistent association of two large co-expression modules with ALS disease status. Ingenuity Pathway Analysis of the ALS related module genes implicates enrichment of functional categories related to genetic disorders, neurodegeneration of the nervous system and inflammatory disease. The ALS related modules contain a number of candidate genes possibly involved in pathogenesis of ALS.ConclusionThis first large-scale blood gene expression study in ALS observed distinct patterns between cases and controls which may provide opportunities for biomarker development as well as new insights into the molecular mechanisms of the disease.

Collaboration


Dive into the John H. J. Wokke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pieter A. van Doorn

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra Kalmijn

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge