Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John H. Schwartz is active.

Publication


Featured researches published by John H. Schwartz.


Journal of Clinical Investigation | 1991

Interleukin 1 induces prolonged L-arginine-dependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells.

D Beasley; John H. Schwartz; Barry M. Brenner

The cytokine interleukin 1 (IL-1) inhibits contractile responses in rat aorta by causing endothelium-independent and prolonged activation of soluble guanylate cyclase. The present study tested whether IL-1 activates guanylate cyclase by inducing prolonged production of nitric oxide in cultured rat aortic vascular smooth muscle cells (VSMC). IL-1 induced a marked time-dependent increase in cyclic guanosine monophosphate (cGMP) in VSMC which was significant at 6 h, and increased progressively for up to 36 h. This effect of IL-1 was abolished when protein synthesis was inhibited with cycloheximide or actinomycin D, suggesting that the effect of IL-1 involves new protein synthesis. IL-1-induced cGMP accumulation was inhibited by the soluble guanylate cyclase inhibitors, methylene blue, LY83583, and hemoglobin and by the L-arginine analogue NGmonomethyl-L-arginine (L-NMMA). The inhibitory effect of L-NMMA was reversed by a 10-fold excess of L-arginine, but not by D-arginine. Nitrite, an oxidation product of nitric oxide, accumulated in the media of VSMC incubated with IL-1 for 24 h in the presence of L-arginine, whereas both IL-1-induced cGMP accumulation and nitrite production were attenuated in VSMC incubated in L-arginine-deficient medium. In L-arginine-depleted VSMC, IL-1-induced cGMP accumulation was restored to control levels by a 15-min incubation with L-arginine. These results demonstrate that IL-1 activates guanylate cyclase in rat VSMC by inducing production of nitric oxide via a pathway dependent on extracellular L-arginine.


Journal of Biological Chemistry | 2008

Hsp27 Inhibits Bax Activation and Apoptosis via a Phosphatidylinositol 3-Kinase-dependent Mechanism

Andrea Havasi; Zhijian Li; Zhiyong Wang; Jody L. Martin; Venugopal Botla; Kathleen Ruchalski; John H. Schwartz; Steven C. Borkan

Hsp27 inhibits mitochondrial injury and apoptosis in both normal and cancer cells by an unknown mechanism. To test the hypothesis that Hsp27 decreases apoptosis by inhibiting Bax, Hsp27 expression was manipulated in renal epithelial cells before transient metabolic stress, an insult that activates Bax, induces mitochondrial injury, and causes apoptosis. Compared with control, enhanced Hsp27 expression inhibited conformational Bax activation, oligomerization, and translocation to mitochondria, reduced the leakage of both cytochrome c and apoptosis-inducing factor, and significantly improved cell survival by >50% after stress. In contrast, Hsp27 down-regulation using RNA-mediated interference promoted Bax activation, increased Bax translocation, and reduced cell survival after stress. Immunoprecipitation did not detect Hsp27-Bax interaction before, during, or after stress, suggesting that Hsp27 indirectly inhibits Bax. During stress, Hsp27 expression prevented the inactivation of Akt, a pro-survival kinase, and increased the interaction between Akt and Bax, an Akt substrate. In contrast, Hsp27 RNA-mediated interference promoted Akt inactivation during stress. Hsp27 up- or down-regulation markedly altered the activity of phosphatidylinositol 3-kinase (PI3-kinase), a major regulator of Akt. Furthermore, distinct PI3-kinase inhibitors completely abrogated the protective effect of Hsp27 expression on Akt activation, Bax inactivation, and cell survival. These data show that Hsp27 antagonizes Bax-mediated mitochondrial injury and apoptosis by promoting Akt activation via a PI3-kinase-dependent mechanism.


Journal of Clinical Investigation | 1984

Proton secretion by stimulated neutrophils. Significance of hexose monophosphate shunt activity as source of electrons and protons for the respiratory burst.

Niels Borregaard; John H. Schwartz; Alfred I. Tauber

Phagocytosis by neutrophils is accompanied by a burst in O2 consumption and activation of the hexose monophosphate shunt (HMPS). Proton secretion equal to the amount of O2 consumed is an additional feature of the respiratory burst, but its source has not been identified, nor has the source of all electrons donated to O2 in the respiratory burst. We chemically quantitated total CO2 generation in human neutrophils and found that proton secretion elicited by phagocytosis was accompanied by a stoichiometric increase in CO2 generation. Addition of carbonic anhydrase and its inhibitors had no effect on either the quantities of CO2 measured or the quantities of protons secreted. Therefore, the CO2 generated in the respiratory burst of stimulated neutrophils is hydrated to form H2CO3, which then dissociates, accounting for the observed proton secretion. Furthermore, the CO2 generated corresponds to the O2 consumed with a respiratory quotient of nearly 1. We conclude on the basis of this and previous studies that the HMPS activity is the source of both the electrons for the NADPH oxidase and of protons secreted in association with the respiratory burst.


Journal of Biological Chemistry | 2006

Distinct hsp70 Domains Mediate Apoptosis-inducing Factor Release and Nuclear Accumulation *

Kathleen Ruchalski; Haiping Mao; Zhijian Li; Zhiyong Wang; Sara Gillers; Yihan Wang; Dick D. Mosser; Vladimir L. Gabai; John H. Schwartz; Steen C Borkan

Although hsp70 antagonizes apoptosis-inducing factor (AIF)-mediated cell death, the relative importance of preventing its release from mitochondria versus sequestering leaked AIF in the cytosol remains controversial. To dissect these two protective mechanisms, hsp70 deletion mutants lacking either the chaperone function (hsp70-ΔEEVD) or ATPase function (hsp70-ΔATPase) were selectively overexpressed before exposing cells to a metabolic inhibitor, an insult sufficient to cause mitochondrial AIF release, nuclear AIF accumulation, and apoptosis. Compared with empty vector, overexpression of wild type human hsp70 inhibited bax activation and reduced mitochondrial AIF release after injury. In contrast, mutants lacking either the chaperone function (hsp70-ΔEEVD) or the ATP hydrolytic domain (hsp70-ΔATPase) failed to prevent mitochondrial AIF release. Although hsp70-ΔEEVD did not inhibit bax activation or mitochondrial membrane injury after cell stress, this hsp70 mutant co-immunoprecipitated with leaked AIF in injured cells and decreased nuclear AIF accumulation. In contrast, hsp70-ΔATPase did not interact with AIF either in intact cells or in a cell-free system and furthermore, failed to prevent nuclear AIF accumulation. These results demonstrate that mitochondrial protection against bax-mediated injury requires both intact chaperone and ATPase functions, whereas the ATPase domain is critical for sequestering AIF in the cytosol.


Journal of Clinical Investigation | 1990

Rat aortic smooth muscle cells in culture express kallikrein, kininogen, and bradykininase activity.

N B Oza; John H. Schwartz; H D Goud; Norman G. Levinsky

We have studied rat vascular smooth muscle (VSM) cells in culture for the presence of key elements of the glandular kallikrein-kinin system. Direct radioimmunoassay (RIA) using antiserum against rat urinary kallikrein detected a glandular kallikrein-like enzyme (GKLE) in VSM cells and in media. VSM homogenates and culture media had kininogenase activity, generating kinins from dog kininogen. About half of the GKLE was enzymatically inactive which could be activated with trypsin. Kininogenase activity was inhibited completely by aprotinin but only 20% by soybean trypsin inhibitor (SBTI). Trypsin liberated kinins from homogenates and media, demonstrating that VSM cells contain kininogen. Homogenates and media rapidly degrade bradykinin. GKLE, kininogen, and bradykininase activity were all present in VSM cells grown in defined media that contain no serum, thus eliminating any contamination or artefacts from fetal calf serum in standard culture media. Blood vessels of the rat have been reported to contain GKLE. Our observations indicate that GKLE is synthesized by VSM cells, not deposited from plasma. Furthermore, VSM cells synthesize kininogen and bradykininase(s), the other key elements of the glandular kallikrein-kinin system. Thus it is possible that the system functions as an autocoid mechanism that regulates local vascular tone.


Journal of The American Society of Nephrology | 2009

β-Catenin Promotes Survival of Renal Epithelial Cells by Inhibiting Bax

Zhiyong Wang; Andrea Havasi; Jonathan M. Gall; Haiping Mao; John H. Schwartz; Steven C. Borkan

Ischemia activates Bax, a proapoptotic BCL2 protein, as well as the prosurvival beta-catenin/Wnt signaling pathway. To test the hypothesis that beta-catenin/Wnt signaling regulates Bax-mediated apoptosis after induction of metabolic stress, which occurs during renal ischemia, we infected immortalized and primary proximal tubular epithelial cells with adenovirus to express either constitutively active or dominant negative beta-catenin constructs. Constitutively active beta-catenin significantly decreased apoptosis and improved cell survival after metabolic stress. Furthermore, active beta-catenin decreased Bax activation, oligomerization, and translocation to mitochondria, and reduced both organelle membrane injury and apoptosis. Dominant negative beta-catenin had the opposite effects. Because Akt regulates Bax, we examined the effects of the beta-catenin mutants on Akt expression and activation. Constitutively active beta-catenin increased Akt-1 expression and activation before and after stress, and treatment with a phosphatidylinositol-3 kinase inhibitor antagonized the protective effects of beta-catenin on Akt activation, Bax inhibition, and cell survival. In addition, beta-catenin significantly increased the rate of phosphorylation at Bax serine(184), an Akt-specific target. Taken together, these results suggest that beta-catenin/Wnt signaling promotes survival of renal epithelial cells after metabolic stress, in part by inhibiting Bax in a phosphatidylinositol-3 kinase/Akt-dependent manner.


Kidney International | 2011

Induction of heat shock protein 70 inhibits ischemic renal injury

Zhiyong Wang; Jonathan M. Gall; Ramon G. Bonegio; Andrea Havasi; Clayton R. Hunt; Michael Y. Sherman; John H. Schwartz; Steven C. Borkan

Heat shock protein 70 (Hsp70) is a potent antiapoptotic agent. Here, we tested whether it directly regulates renal cell survival and organ function in a model of transient renal ischemia using Hsp70 knockout, heterozygous, and wild-type mice. The kidney cortical Hsp70 content inversely correlated with tubular injury, apoptosis, and organ dysfunction after injury. In knockout mice, ischemia caused changes in the activity of Akt and glycogen synthase kinase 3-β (kinases that regulate the proapoptotic protein Bax), increased active Bax, and activated the proapoptotic protease caspase 3. As these changes were significantly reduced in the wild-type mice, we tested whether Hsp70 influences ischemia-induced apoptosis. An Hsp70 inducer, geranylgeranylacetone, increased Hsp70 expression in heterozygous and wild-type mice, and reduced both ischemic tubular injury and organ dysfunction. When administered after ischemia, this inducer also decreased tubular injury and organ failure in wild-type mice but did not protect the knockout mice. ATP depletion in vitro caused greater mitochondrial Bax accumulation and death in primary proximal tubule cells harvested from knockout compared with wild-type mice and altered serine phosphorylation of a Bax peptide at the Akt-specific target site. In contrast, lentiviral-mediated Hsp70 repletion decreased mitochondrial Bax accumulation and rescued Hsp70 knockout cells from death. Thus, increasing Hsp70 either before or after ischemic injury preserves renal function by attenuating acute kidney injury.


Journal of The American Society of Nephrology | 2010

GSK3β Promotes Apoptosis after Renal Ischemic Injury

Zhiyong Wang; Andrea Havasi; Jonathan M. Gall; Ramon G. Bonegio; Zhijian Li; Haiping Mao; John H. Schwartz; Steven C. Borkan

The mechanism by which the serine-threonine kinase glycogen synthase kinase-3beta (GSK3beta) affects survival of renal epithelial cells after acute stress is unknown. Using in vitro and in vivo models, we tested the hypothesis that GSK3beta promotes Bax-mediated apoptosis, contributing to tubular injury and organ dysfunction after acute renal ischemia. Exposure of renal epithelial cells to metabolic stress activated GSK3beta, Bax, and caspase 3 and induced apoptosis. Expression of a constitutively active GSK3beta mutant activated Bax and decreased cell survival after metabolic stress. In contrast, pharmacologic inhibition (4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione [TDZD-8]) or RNA interference-mediated knockdown of GSK3beta promoted cell survival. Furthermore, RNA interference-mediated knockdown of Bax abrogated the cell death induced by constitutively active GSK3beta. In a cell-free assay, TDZD-8 inhibited the phosphorylation of a peptide containing the Bax serine(163) site targeted by stress-activated GSK3beta. In rats, TDZD-8 inhibited ischemia-induced activation of GSK3beta, Bax, and caspase 3; ameliorated tubular and epithelial cell damage; and significantly protected renal function. Taken together, GSK3beta-mediated Bax activation induces apoptosis and tubular damage that contribute to acute ischemic kidney injury.


Analytical Biochemistry | 1988

Micro-method for the measurement of carbonic anhydrase activity in cellular homogenates.

Luc P. Brion; John H. Schwartz; Beth Zavilowitz; George J. Schwartz

The kidney is responsible for the excretion of acid. Carbonic anhydrase (CA) activity facilitates H+ secretion by catalyzing the buffering by CO2 of cellular-generated base. We describe a simple and inexpensive micro-method for the determination of CA activity in monolayers of cultured renal cells using imidazole-Tris buffers. Our method is twice as sensitive as that originally described by Maren and the endpoint is much less affected by other cellular proteins. It can easily determine the CA activity of a monolayer of cells grown to confluence in a 75-cm2 flask. In some cases homogenates giving no detectable activity by Marens technique had assayable CA activity by the imidazole-Tris method. A smaller reaction system providing a 10-fold reduction in volume (or increase in sensitivity) permits the determination of CA activity in 25-cm2 monolayers and even in microdissected proximal tubular segments totaling less than 5 mm in length. We believe that the regulation of CA activity at the cellular level may be better understood using this more sensitive assay.


Journal of Clinical Investigation | 1988

Adenosine triphosphate depletion induces a rise in cytosolic free calcium in canine renal epithelial cells.

C. E. McCoy; A. M. Selvaggio; Edward A. Alexander; John H. Schwartz

An elevation in cytosolic free calcium (Cai) produced by cellular ATP depletion may contribute to the initiation of cytotoxic events in renal ischemia. To evaluate whether ATP depletion results in a rise in Cai we examined the effect of cyanide and 2-deoxy-D-glucose on the Cai of Madin-Darby canine kidney cells. Exposure to the metabolic inhibitors resulted in a rise in Cai from 112 +/- 11 to 649 +/- 99 nM in 15 min. This combination of metabolic inhibitors also resulted in a decrement of cell ATP to 11 +/- 2% of control by 15 min. Experiments that were performed with other metabolic inhibitors confirm that the increment in Cai is due to inhibition of ATP synthesis. With the removal of cyanide and 2-deoxy-D-glucose, Cai recovered to 101 +/- 16 nM. In the absence of extracellular calcium activity (Ca0), Cai declined from 127 +/- 7 to 38 +/- 6 nM, whereas with cyanide plus 2-deoxy-D-glucose in the absence of Ca0 the Cai rose from 108 +/- 21 to 151 +/- 28 nM. Because the rise in Cai produced by ATP depletion in the absence of Ca0 is significantly less than that which occurs in the presence of Ca0, influx of Ca0 is necessary for the maximal rise of Cai. The rise in Cai that occurred in the absence of Ca0 suggests that the release of calcium from intracellular stores contributes to the increment in Cai seen with ATP depletion. TMB-8, an inhibitor of calcium release from intracellular stores, blunted the rise in Cai by nearly 50%. Neither verapamil nor nifedipine inhibited the rise in Cai. This study demonstrates that ATP depletion induced by the metabolic inhibitors cyanide and 2-deoxy-D-glucose is associated with a rapid and reversible increase in Cai. Both Ca0 influx and Cai redistribution contribute to this rise.

Collaboration


Dive into the John H. Schwartz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satish K. Singh

Indian Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge