Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan M. Gall is active.

Publication


Featured researches published by Jonathan M. Gall.


Journal of The American Society of Nephrology | 2009

β-Catenin Promotes Survival of Renal Epithelial Cells by Inhibiting Bax

Zhiyong Wang; Andrea Havasi; Jonathan M. Gall; Haiping Mao; John H. Schwartz; Steven C. Borkan

Ischemia activates Bax, a proapoptotic BCL2 protein, as well as the prosurvival beta-catenin/Wnt signaling pathway. To test the hypothesis that beta-catenin/Wnt signaling regulates Bax-mediated apoptosis after induction of metabolic stress, which occurs during renal ischemia, we infected immortalized and primary proximal tubular epithelial cells with adenovirus to express either constitutively active or dominant negative beta-catenin constructs. Constitutively active beta-catenin significantly decreased apoptosis and improved cell survival after metabolic stress. Furthermore, active beta-catenin decreased Bax activation, oligomerization, and translocation to mitochondria, and reduced both organelle membrane injury and apoptosis. Dominant negative beta-catenin had the opposite effects. Because Akt regulates Bax, we examined the effects of the beta-catenin mutants on Akt expression and activation. Constitutively active beta-catenin increased Akt-1 expression and activation before and after stress, and treatment with a phosphatidylinositol-3 kinase inhibitor antagonized the protective effects of beta-catenin on Akt activation, Bax inhibition, and cell survival. In addition, beta-catenin significantly increased the rate of phosphorylation at Bax serine(184), an Akt-specific target. Taken together, these results suggest that beta-catenin/Wnt signaling promotes survival of renal epithelial cells after metabolic stress, in part by inhibiting Bax in a phosphatidylinositol-3 kinase/Akt-dependent manner.


Kidney International | 2011

Induction of heat shock protein 70 inhibits ischemic renal injury

Zhiyong Wang; Jonathan M. Gall; Ramon G. Bonegio; Andrea Havasi; Clayton R. Hunt; Michael Y. Sherman; John H. Schwartz; Steven C. Borkan

Heat shock protein 70 (Hsp70) is a potent antiapoptotic agent. Here, we tested whether it directly regulates renal cell survival and organ function in a model of transient renal ischemia using Hsp70 knockout, heterozygous, and wild-type mice. The kidney cortical Hsp70 content inversely correlated with tubular injury, apoptosis, and organ dysfunction after injury. In knockout mice, ischemia caused changes in the activity of Akt and glycogen synthase kinase 3-β (kinases that regulate the proapoptotic protein Bax), increased active Bax, and activated the proapoptotic protease caspase 3. As these changes were significantly reduced in the wild-type mice, we tested whether Hsp70 influences ischemia-induced apoptosis. An Hsp70 inducer, geranylgeranylacetone, increased Hsp70 expression in heterozygous and wild-type mice, and reduced both ischemic tubular injury and organ dysfunction. When administered after ischemia, this inducer also decreased tubular injury and organ failure in wild-type mice but did not protect the knockout mice. ATP depletion in vitro caused greater mitochondrial Bax accumulation and death in primary proximal tubule cells harvested from knockout compared with wild-type mice and altered serine phosphorylation of a Bax peptide at the Akt-specific target site. In contrast, lentiviral-mediated Hsp70 repletion decreased mitochondrial Bax accumulation and rescued Hsp70 knockout cells from death. Thus, increasing Hsp70 either before or after ischemic injury preserves renal function by attenuating acute kidney injury.


Journal of The American Society of Nephrology | 2010

GSK3β Promotes Apoptosis after Renal Ischemic Injury

Zhiyong Wang; Andrea Havasi; Jonathan M. Gall; Ramon G. Bonegio; Zhijian Li; Haiping Mao; John H. Schwartz; Steven C. Borkan

The mechanism by which the serine-threonine kinase glycogen synthase kinase-3beta (GSK3beta) affects survival of renal epithelial cells after acute stress is unknown. Using in vitro and in vivo models, we tested the hypothesis that GSK3beta promotes Bax-mediated apoptosis, contributing to tubular injury and organ dysfunction after acute renal ischemia. Exposure of renal epithelial cells to metabolic stress activated GSK3beta, Bax, and caspase 3 and induced apoptosis. Expression of a constitutively active GSK3beta mutant activated Bax and decreased cell survival after metabolic stress. In contrast, pharmacologic inhibition (4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione [TDZD-8]) or RNA interference-mediated knockdown of GSK3beta promoted cell survival. Furthermore, RNA interference-mediated knockdown of Bax abrogated the cell death induced by constitutively active GSK3beta. In a cell-free assay, TDZD-8 inhibited the phosphorylation of a peptide containing the Bax serine(163) site targeted by stress-activated GSK3beta. In rats, TDZD-8 inhibited ischemia-induced activation of GSK3beta, Bax, and caspase 3; ameliorated tubular and epithelial cell damage; and significantly protected renal function. Taken together, GSK3beta-mediated Bax activation induces apoptosis and tubular damage that contribute to acute ischemic kidney injury.


Kidney International | 2011

Hexokinase regulates Bax-mediated mitochondrial membrane injury following ischemic stress

Jonathan M. Gall; Vincent Wong; David R. Pimental; Andrea Havasi; Zhiyong Wang; John G. Pastorino; Ramon G. Bonegio; John H. Schwartz; Steven C. Borkan

Hexokinase (HK), the rate-limiting enzyme in glycolysis, controls cell survival by promoting metabolism and/or inhibiting apoptosis. Since HK isoforms I and II have mitochondrial targeting sequences, we attempted to separate the protective effects of HK on cell metabolism from those on apoptosis. We exposed renal epithelial cells to metabolic stress causing ATP depletion in the absence of glucose and found that this activated glycogen synthase kinase 3β (GSK3β) and Bax caused mitochondrial membrane injury and apoptosis. ATP depletion led to a progressive HK II dissociation from mitochondria, released mitochondrial apoptosis inducing factor and cytochrome c into the cytosol, activated caspase-3, and reduced cell survival. Compared with control, adenoviral-mediated HK I or II overexpression improved cell survival following stress, but did not prevent GSK3β or Bax activation, improve ATP content, or reduce mitochondrial fragmentation. HK I or HK II overexpression increased mitochondria-associated isoform-specific HK content, and decreased mitochondrial membrane injury and apoptosis after stress. In vivo, HK II localized exclusively to the proximal tubule. Ischemia reduced total renal HK II content and dissociated HK II from proximal tubule mitochondria. In cells overexpressing HK II, Bax and HK II did not interact before or after stress. While the mechanism by which HK antagonizes Bax-mediated apoptosis is unresolved by these studies, one possible scenario is that the two proteins compete for a common binding site on the outer mitochondrial membrane.


PLOS ONE | 2012

Role of Mitofusin 2 in the Renal Stress Response

Jonathan M. Gall; Zhiyong Wang; Marc Liesa; Anthony Molina; Andrea Havasi; John H. Schwartz; Orian S. Shirihai; Steven C. Borkan; Ramon G. Bonegio

The role of mitofusin 2 (MFN2), a key regulator of mitochondrial morphology and function in the renal stress response is unknown. To assess its role, the MFN2 floxed gene was conditionally deleted in the kidney of mice (MFN2 cKO) by Pax2 promoter driven Cre expression (Pax2Cre). MFN2 cKO caused severe mitochondrial fragmentation in renal epithelial cells that are critical for normal kidney tubular function. However, despite a small (20%) decrease in nephron number, newborn cKO pups had organ or tubular function that did not differ from littermate Cre-negative pups. MFN2 deficiency in proximal tubule epithelial cells in primary culture induced mitochondrial fragmentation but did not significantly alter ATP turnover, maximal mitochondrial oxidative reserve capacity, or the low level of oxygen consumption during cyanide exposure. MFN2 deficiency also did not increase apoptosis of tubule epithelial cells under non-stress conditions. In contrast, metabolic stress caused by ATP depletion exacerbated mitochondrial outer membrane injury and increased apoptosis by 80% in MFN2 deficient vs. control cells. Despite similar stress-induced Bax 6A7 epitope exposure in MFN2 deficient and control cells, MFN2 deficiency significantly increased mitochondrial Bax accumulation and was associated with greater release of both apoptosis inducing factor and cytochrome c. In conclusion, MFN2 deficiency in the kidney causes mitochondrial fragmentation but does not affect kidney or tubular function during development or under non-stress conditions. However, MFN2 deficiency exacerbates renal epithelial cell injury by promoting Bax-mediated mitochondrial outer membrane injury and apoptosis.


American Journal of Physiology-renal Physiology | 2009

Hsp27 inhibits sublethal, Src-mediated renal epithelial cell injury

Andrea Havasi; Zhiyong Wang; Jonathan M. Gall; Max Spaderna; Vikram Suri; Ellery Canlas; Jody L. Martin; John H. Schwartz; Steven C. Borkan

Disruption of cell contact sites in renal epithelial cells contributes to organ dysfunction after ischemia. We hypothesized that heat shock protein 27 (Hsp27), a known cytoprotectant protein, preserves cell architecture and cell contact site function during ischemic stress. To test this hypothesis, renal epithelial cells were subjected to transient ATP depletion, an in vitro model of ischemia-reperfusion injury. Compared with control, selective Hsp27 overexpression significantly preserved cell-cell junction function during metabolic stress as evidenced by reduced stress-mediated redistribution of the adherens junction protein E-cadherin, higher transepithelial electrical resistance, and lower unidirectional flux of lucifer yellow. Hsp27 overexpression also preserved paxillin staining within focal adhesion complexes and significantly decreased cell detachment during stress. Surprisingly, Hsp27, an F-actin-capping protein, only minimally reduced stress induced actin cytoskeleton collapse. In contrast to Hsp27 overexpression, siRNA-mediated knockdown had the opposite effect on these parameters. Since ischemia activates c-Src, a tyrosine kinase that disrupts both cell-cell and cell-substrate interactions, the relationship between Hsp27 and c-Src was examined. Although Hsp27 and c-Src did not coimmunoprecipitate and Hsp27 overexpression failed to inhibit whole cell c-Src activation during injury, manipulation of Hsp27 altered active c-Src accumulation at cell contact sites. Specifically, Hsp27 overexpression reduced, whereas Hsp27 knockdown increased active p-(416)Src detected at contact sites in intact cells as well as in a purified cell membrane fraction. Together, this evidence shows that Hsp27 overexpression prevents sublethal REC injury at cell contact sites possibly by a c-Src-dependent mechanism. Further exploration of the biochemical link between Hsp27 and c-Src could yield therapeutic interventions for ameliorating ischemic renal cell injury and organ dysfunction.


Journal of The American Society of Nephrology | 2015

Conditional Knockout of Proximal Tubule Mitofusin 2 Accelerates Recovery and Improves Survival after Renal Ischemia

Jonathan M. Gall; Zhiyong Wang; Ramon G. Bonegio; Andrea Havasi; Marc Liesa; Pradheep Vemula; Steven C. Borkan

Proximal tubule (PT) cells are critical targets of acute ischemic injury. Elimination of the mitochondrial fusion protein mitofusin 2 (Mfn2) sensitizes PT cells to apoptosis in vitro. However, the role of PT Mfn2 in ischemic AKI in vivo is unknown. To test its role, we evaluated the effects of conditional KO of PT Mfn2 (cKO-PT-Mfn2) on animal survival after transient bilateral renal ischemia associated with severe AKI. Forty-eight hours after ischemia, 28% of control mice survived compared with 86% of cKO-PT-Mfn2 animals (P<0.001 versus control). Although no significant differences in histologic injury score, apoptosis, or necrosis were detected between genotypes, cKO-PT-Mfn2 kidneys exhibited a 3.5-fold increase in cell proliferation restricted to the intrarenal region with Mfn2 deletion. To identify the signals responsible for increased proliferation, primary PT cells with Mfn2 deficiency were subjected to stress by ATP depletion in vitro. Compared with normal Mfn2 expression, Mfn2 deficiency significantly increased PT cell proliferation and persistently activated extracellular signal-regulated kinase 1/2 (ERK1/2) during recovery from stress. Furthermore, stress and Mfn2 deficiency decreased the interaction between Mfn2 and Ras detected by immunoprecipitation, and purified Mfn2 dose-dependently decreased Ras activity in a cell-free assay. Ischemia in vivo also reduced the Mfn2-RAS interaction and increased both RAS and p-ERK1/2 activity in the renal cortical homogenates of cKO-PT-Mfn2 mice. Our results suggest that, in contrast to its proapoptotic effects in vitro, selective PT Mfn2 deficiency accelerates recovery of renal function and enhances animal survival after ischemic AKI in vivo, partly by increasing Ras-ERK-mediated cell proliferation.


Molecular and Cellular Biology | 2013

Nucleophosmin, a Critical Bax Cofactor in Ischemia-Induced Cell Death

Zhiyong Wang; Jonathan M. Gall; Ramon G. Bonegio; Andrea Havasi; Katarina Illanes; John H. Schwartz; Steven C. Borkan

ABSTRACT We hypothesized that nucleophosmin (NPM), a nucleolar phosphoprotein, is critical for Bax-mediated cell death. To test this hypothesis, Bax activation was induced by metabolic stress. During stress, nucleolar NPM translocated into the cytosol, NPM-Bax complexes formed, and both NPM and Bax accumulated in mitochondria. Expression of a cytosol-restricted NPM mutant (NPM-ΔNLS), but not a nucleus-restricted NPM mutant, increased NPM-Bax complex formation, mitochondrial NPM and Bax accumulation, mitochondrial membrane injury, caspase 3 activation, and ischemia-induced cell death. Coexpression of NPM-ΔNLS with constitutively active Bax mutants caused nearly universal cell death in the absence of metabolic stress, whereas expression of active Bax or NPM-ΔNLS alone did not. A Bax peptide that disrupts NPM-Bax interaction significantly reduced cell death caused by exposure to metabolic inhibitors in vitro and preserved kidney function after ischemia in vivo. Thus, NPM-Bax interaction enhances mitochondrial Bax accumulation, organelle injury, and cell death. NPM-Bax complex formation is a novel target for preventing ischemic tissue injury.


Archive | 2010

Multifaceted Role of Heat Stress Proteins in the Kidney

Andrea Havasi; Jonathan M. Gall; Steven C. Borkan

The kidney represents an ideal “laboratory” for assessing the role of physiologic stresses on stress proteins. This organ is equally well suited for assessing the protective effects of stress proteins against known renal insults. As a metabolically active organ that operates on the brink of “hypoxic disaster” and is capable of concentrating therapeutic agents to levels far higher than present in the circulation, the kidney is vulnerable to diverse stressors that include oxygen deprivation, ischemia, and nephrotoxin. Stress proteins exert potent stabilizing effects on epithelial cell architecture that represent reversible or “sublethal injury.” Stress proteins also promote cell survival, partly by interrupting the apoptotic pathway that contributes to organ failure. HSPs target different checkpoints in the cell death pathway, often utilizing distinct functional domains within a single HSPs to exert multiple cytoprotective effects. In sharp contrast to their protective effects in the intracellular milieu, recent evidence shows that HSPs in the extracellular compartment are pro-inflammatory. Given the relative paucity of treatments available to prevent injury or promote renal recovery, manipulation of endogenous stress proteins represents a promising arena for defining new approaches to nephrologic problems that contribute to substantial human morbidity and mortality


American Journal of Pathology | 2013

Histone Acetyl Transferase (HAT) HBO1 and JADE1 in Epithelial Cell Regeneration

Andrea Havasi; Joseph A. Haegele; Jonathan M. Gall; Sherry Blackmon; Takaharu Ichimura; Ramon G. Bonegio; Maria V. Panchenko

Collaboration


Dive into the Jonathan M. Gall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haiping Mao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clayton R. Hunt

Houston Methodist Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge