Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John H. Shaw is active.

Publication


Featured researches published by John H. Shaw.


Geology | 2009

Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China.

Xiwei Xu; Xueze Wen; Gui Hua Yu; Guihua Chen; Yann Klinger; Judith Hubbard; John H. Shaw

The Mw 7.9 Wenchuan, China, earthquake ruptured two large thrust faults along the Long-menshan thrust belt at the eastern margin of the Tibetan Plateau. This earthquake generated a 240-km-long surface rupture zone along the Beichuan fault and an additional 72-km-long surface rupture zone along the Pengguan fault. Maximum vertical and horizontal offsets of 6.5 m and 4.9 m, respectively, were measured along the Beichuan fault. A maximum vertical offset of 3.5 m was measured along the Pengguan fault. Coseismic surface ruptures, integrated with aftershocks and industry seismic profiles, show that two imbricate structures have ruptured simultaneously, resulting in the largest continental thrust event ever documented. Large oblique thrusting observed during this earthquake indicates that crustal shortening is an important process responsible for the high topography in the region, as everywhere along the edge of Tibetan Plateau.


Nature | 2009

Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan ( M = 7.9) earthquake

Judith Hubbard; John H. Shaw

The Longmen Shan mountain range, site of the devastating 12 May 2008 Wenchuan (M =  7.9) earthquake, defines the eastern margin of the Himalayan orogen and exhibits greater topographic relief than anywhere else in the Tibetan plateau. However, before the earthquake, geodetic and geologic surveys measured little shortening across the range front, inspiring a vigorous debate about the process by which the topography of the mountain belt is produced and maintained. Two endmember models have been proposed: (1) brittle crustal thickening, in which thrust faults with large amounts of slip that are rooted in the lithosphere cause uplift, and (2) crustal flow, in which low-viscosity material in the lower crust extrudes outward from the Tibetan plateau and inflates the crust north and east of the Himalayas. Here we use balanced geologic cross-sections to show that crustal shortening, structural relief, and topography are strongly correlated in the range front. This suggests that crustal shortening is a primary driver for uplift and topography of the Longmen Shan on the flanks of the plateau. The 2008 Wenchuan (M =  7.9) earthquake, which ruptured a large thrust fault along the range front causing tens of thousands of fatalities and widespread damage, is an active manifestation of this shortening process.


Bulletin of the Seismological Society of America | 2004

Simulations of Ground Motion in the Los Angeles Basin Based upon the Spectral-Element Method

Dimitri Komatitsch; Qinya Liu; Jeroen Tromp; Peter Süss; Christiane Stidham; John H. Shaw

We use the spectral-element method to simulate ground motion generated by two recent and well-recorded small earthquakes in the Los Angeles basin. Simulations are performed using a new sedimentary basin model that is constrained by hundreds of petroleum-industry well logs and more than 20,000 km of seismic reflection profiles. The numerical simulations account for 3D variations of seismic-wave speeds and density, topography and bathymetry, and attenuation. Simulations for the 9 September 2001 M_w 4.2 Hollywood earthquake and the 3 September 2002 M_w 4.2 Yorba Linda earthquake demonstrate that the combination of a detailed sedimentary basin model and an accurate numerical technique facilitates the simulation of ground motion at periods of 2 sec and longer inside the basin model and 6 sec and longer in the regional model. Peak ground displacement, velocity, and acceleration maps illustrate that significant amplification occurs in the basin.


AAPG Bulletin | 2005

Structural styles in the deep-water fold and thrust belts of the Niger Delta

Freddy Corredor; John H. Shaw; Frank Bilotti

The deep-water Niger Delta includes two large fold and thrust belts, products of contraction caused by gravity-driven extension on the shelf that exhibit complex styles of thrusting. These contractional structures formed above multiple detachment levels in the overpressured shales of the Akata Formation. Using the patterns of growth sedimentation, fold shapes, fault-plane seismic reflections, and combined conventional and shear fault-bend folding theories, we describe and model the structural styles and kinematics of the fault-related folds and imbricate thrust systems that compose these belts. Individual fault-related folds, involving both forethrusts and backthrusts, are characterized by long planar backlimbs that dip less than the associated fault ramps, with upward shallowing of dips in growth strata above the backlimbs suggesting components of progressive limb rotation. Forelimbs are short compared to backlimbs, but growth strata show more consistent dips that suggest a component of folding by kink-band migration. Thus, we employ a combination of classic and shear fault-bend fold theories to describe these structures, including the influence of a weak basal detachment zone in the overpressured shales. We expand upon these theories to model the kinematics of imbricate thrust systems, which display a complex history of thrusting related to spatial and temporal variations in deposition across the delta. Regional patterns of folded growth strata are used to define break-forward, break-backward, and coeval thrusting involving single and multiple detachment levels. We define two main types of imbricate thrust systems: type I system with a single basal detachment level and type II imbricate system with multiple basal detachment levels, which cause massive structural thickening of the Akata Formation and refolding of shallow thrust sheets. Through the sequential restoration of two regional cross sections across these systems, we resolve the structural styles, the timing and sequences of thrusting, as well as the regional amounts of shortening, all of which have important implications for hydrocarbon maturation and charge in the deep-water Niger Delta.


Journal of Geophysical Research | 1996

Earthquake hazards of active blind‐thrust faults under the central Los Angeles basin, California

John H. Shaw; John Suppe

We document several blind-thrust faults under the Los Angeles basin that, if active and seismogenic, are capable of generating large earthquakes (M = 6.3 to 7.3). Pliocene to Quaternary growth folds imaged in seismic reflection profiles record the existence, size, and slip rates of these blind faults. The growth structures have shapes characteristic of fault-bend folds above blind thrusts, as demonstrated by balanced kinematic models, geologic cross sections, and axial-surface maps. We interpret the Compton-Los Alamitos trend as a growth fold above the Compton ramp, which extends along strike from west Los Angeles to at least the Santa Ana River. The Compton thrust is part of a larger fault system, including a decollement and ramps beneath the Elysian Park and Palos Verdes trends. The Cienegas and Coyote Hills growth folds overlie additional blind thrusts in the Elysian Park trend that are not closely linked to the Compton ramp. Analysis of folded Pliocene to Quaternary strata yields slip rates of 1.4 ± 0.4 mm/yr on the Compton thrust and 1.7 ± 0.4 mm/yr on a ramp beneath the Elysian Park trend. Assuming that slip is released in large earthquakes, we estimate magnitudes of 6.3 to 6.8 for earthquakes on individual ramp segments based on geometric segment sizes derived from axial surface maps. Multiple-segment ruptures could yield larger earthquakes (M = 6.9 to 7.3). Relations among magnitude, coseismic displacement, and slip rate yield an average recurrence interval of 380 years for single-segment earthquakes and a range of 400 to 1300 years for multiple-segment events. If these newly documented blind thrust faults are active, they will contribute substantially to the seismic hazards in Los Angeles because of their locations directly beneath the metropolitan area.


Bulletin of the Seismological Society of America | 2007

Community Fault Model (CFM) for Southern California

Andreas Plesch; John H. Shaw; Christine Benson; William A. Bryant; Sara Carena; Michele L. Cooke; James F. Dolan; Gary S. Fuis; Eldon Gath; Lisa B. Grant; Egill Hauksson; Thomas H. Jordan; Marc Kamerling; Mark R. Legg; Scott Lindvall; Harold Magistrale; Craig Nicholson; Nathan A. Niemi; Michael Oskin; Sue Perry; George Planansky; Thomas K. Rockwell; Peter M. Shearer; Christopher C. Sorlien; M. Peter Süss; J. E. Suppe; Jerry Treiman; Robert S. Yeats

We present a new three-dimensional model of the major fault systems in southern California. The model describes the San Andreas fault and associated strike- slip fault systems in the eastern California shear zone and Peninsular Ranges, as well as active blind-thrust and reverse faults in the Los Angeles basin and Transverse Ranges. The model consists of triangulated surface representations (t-surfs) of more than 140 active faults that are defined based on surfaces traces, seismicity, seismic reflection profiles, wells, and geologic cross sections and models. The majority of earthquakes, and more than 95% of the regional seismic moment release, occur along faults represented in the model. This suggests that the model describes a comprehen- sive set of major earthquake sources in the region. The model serves the Southern California Earthquake Center (SCEC) as a unified resource for physics-based fault systems modeling, strong ground-motion prediction, and probabilistic seismic hazards assessment.


Geological Society of America Bulletin | 1994

Active faulting and growth folding in the eastern Santa Barbara Channel, California

John H. Shaw; John Suppe

We develop new methods to identify blind-thrust fault systems, determine fault slip rates, and estimate potential earthquake magnitudes and recurrence intervals in active fold-and-thrust belts. These methods are applied to compressive folds along the Offshore Oak Ridge and Blue Bottle trends, which overlie active blind-thrust faults in the eastern Santa Barbara Channel. These folds and their causative faults are interpreted using fault-bend fold theory and are represented in balanced models and cross sections that integrate surface and subsurface data. The structures are mapped using a new technique of axial-surface mapping in seismic reflection grids, which defines three-dimensional structural geometries and shows changes in slip and subsurface fault geometry along strike. Analysis of syntectonic (growth) sediments yields Pliocene and Quaternary fault slip rates of 1.3 mm/yr on a deep thrust (≥16 km) and 1.3 mm/yr on shallower faults (2-5 km). The combined 2.6 mm/yr slip rate represents only part of the 6 mm/yr of shortening measured by geodesy across the channel and estimated from relative Pacific-North American plate motions across the Transverse Ranges. Additional shortening is probably accommodated on other active thrusts in the western Transverse Ranges and in the northern channel along the Santa Barbara coast. Deformed seafloor sediments and a swarm of axial surface seismicity along the fold trends indicate that the underlying thrusts are active and may pose significant earthquake hazards to coastal southern California. Unsegmented fault surfaces are used through empirical relationships between fault surface area and rupture magnitude to estimate the sizes of potential earthquakes. This analysis suggests that a ramp in the Channel Islands fault beneath the Offshore Oak Ridge trend is capable of rupturing in a M s ≥7.2 earthquake. Earthquakes of this magnitude may release ∼2 m of slip, which, when combined with the estimated slip rate (1.3 mm/yr), yields an earthquake recurrence interval of ∼1500 yr for this Channel Islands fault ramp.


AAPG Bulletin | 2005

Deep-water Niger Delta fold and thrust belt modeled as a critical-taper wedge: The influence of elevated basal fluid pressure on structural styles

Frank Bilotti; John H. Shaw

We use critical-taper wedge mechanics theory to show that the Niger Delta toe-thrust system deforms above a very weak basal detachment induced by high pore-fluid pressure. The Niger Delta exhibits similar rock properties but an anomalously low taper (sum of the bathymetric slope and dip of the basal detachment) compared with most orogenic fold belts. This low taper implies that the Niger Delta has a very weak basal detachment, which we interpret to reflect elevated pore-fluid pressure ( 0.90) within the Akata Formation, a prodelta marine shale that contains the basal detachment horizon. The weak basal detachment zone has a significant influence on the structural styles in the deep-water Niger Delta fold belts. The overpressured and, thereby, weak Akata shales ductilely deform within the cores of anticlines and in the hanging walls of toe-thrust structures, leading to the development of shear fault-bend folds and detachment anticlines that form the main structural trap types in the deep-water fold belts. Moreover, the low taper shape leads to the widespread development of backthrust zones, as well as the presence of large, relatively undeformed regions that separate the deep-water fold and thrust belts. This study expands the use of critical-taper wedge mechanics concepts to passive-margin settings, while documenting the influence of elevated basal fluid pressures on the structure and tectonics of the deep-water Niger Delta.


Geology | 2000

Estimation of fault propagation distance from fold shape: Implications for earthquake hazard assessment

Richard W. Allmendinger; John H. Shaw

A numerical grid search using the trishear kinematic model can be used to extract both slip and the distance that a fault tip line has propagated during growth of a fault-propagation fold. The propagation distance defines the initial position of the tip line at the onset of slip. In the Santa Fe Springs anticline of the Los Angeles basin, we show that the tip line of the underlying Puente Hills thrust fault initiated at the same position as the 1987 magnitude 6.0 Whittier Narrows earthquake.


Bulletin of the Seismological Society of America | 2002

Puente Hills Blind-Thrust System, Los Angeles, California

John H. Shaw; Andreas Plesch; James F. Dolan; Thomas L. Pratt; Patricia Fiore

We describe the three-dimensional geometry and Quaternary slip history of the Puente Hills blind-thrust system (PHT) using seismic reflection profiles, petroleum well data, and precisely located seismicity. The PHT generated the 1987 Whittier Narrows (moment magnitude [ M w] 6.0) earthquake and extends for more than 40 km along strike beneath the northern Los Angeles basin. The PHT comprises three, north-dipping ramp segments that are overlain by contractional fault-related folds. Based on an analysis of these folds, we produce Quaternary slip profiles along each ramp segment. The fault geometry and slip patterns indicate that segments of the PHT are related by soft-linkage boundaries, where the fault ramps are en echelon and displacements are gradually transferred from one segment to the next. Average Quaternary slip rates on the ramp segments range from 0.44 to 1.7 mm/yr, with preferred rates between 0.62 and 1.28 mm/yr. Using empirical relations among rupture area, magnitude, and coseismic displacement, we estimate the magnitude and frequency of single ( M w 6.5-6.6) and multisegment ( M w 7.1) rupture scenarios for the PHT. Manuscript received 16 November 2001.

Collaboration


Dive into the John H. Shaw's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judith Hubbard

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

John Suppe

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

James F. Dolan

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas L. Pratt

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge