Thomas L. Pratt
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas L. Pratt.
Bulletin of the Seismological Society of America | 2002
John H. Shaw; Andreas Plesch; James F. Dolan; Thomas L. Pratt; Patricia Fiore
We describe the three-dimensional geometry and Quaternary slip history of the Puente Hills blind-thrust system (PHT) using seismic reflection profiles, petroleum well data, and precisely located seismicity. The PHT generated the 1987 Whittier Narrows (moment magnitude [ M w] 6.0) earthquake and extends for more than 40 km along strike beneath the northern Los Angeles basin. The PHT comprises three, north-dipping ramp segments that are overlain by contractional fault-related folds. Based on an analysis of these folds, we produce Quaternary slip profiles along each ramp segment. The fault geometry and slip patterns indicate that segments of the PHT are related by soft-linkage boundaries, where the fault ramps are en echelon and displacements are gradually transferred from one segment to the next. Average Quaternary slip rates on the ramp segments range from 0.44 to 1.7 mm/yr, with preferred rates between 0.62 and 1.28 mm/yr. Using empirical relations among rupture area, magnitude, and coseismic displacement, we estimate the magnitude and frequency of single ( M w 6.5-6.6) and multisegment ( M w 7.1) rupture scenarios for the PHT. Manuscript received 16 November 2001.
Geological Society of America Bulletin | 2000
Peter J. Haeussler; Ronald L. Bruhn; Thomas L. Pratt
The Cook Inlet basin is a northeast-trending forearc basin above the Aleutian subduction zone in southern Alaska. Folds in Cook Inlet are complex, discontinuous structures with variable shape and vergence that probably developed by right-transpressional deformation on oblique-slip faults extending downward into Mesozoic basement beneath the Tertiary basin. The most recent episode of deformation may have began as early as late Miocene time, but most of the deformation occurred after deposition of much of the Pliocene Sterling Formation. Deformation continued into Quaternary time, and many structures are probably still active. One structure, the Castle Mountain fault, has Holocene fault scarps, an adjacent anticline with flower structure, and historical seismicity. If other structures in Cook Inlet are active, blind faults coring fault-propagation folds may generate M w 6–7+ earthquakes. Dextral transpression of Cook Inlet appears to have been driven by coupling between the North American and Pacific plates along the Alaska-Aleutian subduction zone, and by lateral escape of the forearc to the southwest, due to collision and indentation of the Yakutat terrane 300 km to the east of the basin.
Bulletin of the Seismological Society of America | 2003
Thomas L. Pratt; Thomas M. Brocher; Craig S. Weaver; Kenneth C. Creager; Catherine M. Snelson; Robert S. Crosson; Kate C. Miller; Anne M. Trehu
Recordings of the 1999 M w 7.6 Chi-Chi (Taiwan) earthquake, two local earthquakes, and five blasts show seismic-wave amplification over a large sedimentary basin in the U.S. Pacific Northwest. For weak ground motions from the Chi-Chi earthquake, the Seattle basin amplified 0.2- to 0.8-Hz waves by factors of 8 to 16 relative to bedrock sites west of the basin. The amplification and peak frequency change during the Chi-Chi coda: the initial S -wave arrivals (0–30 sec) had maximum amplifications of 12 at 0.5–0.8 Hz, whereas later arrivals (35–65 sec) reached amplifications of 16 at 0.3–0.5 Hz. Analysis of local events in the 1.0- to 10.0-Hz frequency range show fourfold amplifications for 1.0-Hz weak ground motion over the Seattle basin. Amplifications decrease as frequencies increase above 1.0 Hz, with frequencies above 7 Hz showing lower amplitudes over the basin than at bedrock sites. Modeling shows that resonance in low-impedance deposits forming the upper 550 m of the basin beneath our profile could cause most of the observed amplification, and the larger amplification at later arrival times suggests surface waves also play a substantial role. These results emphasize the importance of shallow deposits in determining ground motions over large basins.
Eos, Transactions American Geophysical Union | 1999
Michael A. Fisher; Thomas M. Brocher; R. D. Hyndman; Anne M. Trehu; Craig S. Weaver; Kenneth C. Creager; Robert S. Crosson; Tom Parsons; Alan K. Cooper; David C. Mosher; George D. Spence; B. C. Zelt; P. T. Hammer; U. S. ten Brink; Thomas L. Pratt; Kate C. Miller; Jonathan R. Childs; G. R. Cochrane; S. Chopra; R. Walia
A multidisciplinary seismic survey earlier this year in the Pacific Northwest is expected to reveal much new information about the earthquake threat to U.S. and Canadian urban areas there. A disastrous earthquake is a very real possibility in the region. The survey, known as the Seismic Hazards Investigation in Puget Sound (SHIPS), engendered close cooperation among geologists, biologists, environmental groups, and government agencies. It also succeeded in striking a fine balance between the need to prepare for a great earthquake and the requirement to protect a coveted marine environment while operating a large airgun array.
Geophysics | 1998
Thomas L. Pratt; James F. Dolan; J. K. Odum; William J. Stephenson; Robert A. Williams; Mary E. Templeton
High‐resolution seismic reflection profiles at two different scales were acquired across the transpressional Santa Monica Fault of north Los Angeles as part of an integrated hazard assessment of the fault. The seismic data confirm the location of the fault and related shallow faulting seen in a trench to deeper structures known from regional studies. The trench shows a series of near‐vertical strike‐slip faults beneath a topographic scarp inferred to be caused by thrusting on the Santa Monica fault. Analysis of the disruption of soil horizons in the trench indicates multiple earthquakes have occurred on these strike‐slip faults within the past 50 000 years, with the latest being 1000 to 3000 years ago. A 3.8-km-long, high‐resolution seismic reflection profile shows reflector truncations that constrain the shallow portion of the Santa Monica Fault (upper 300 m) to dip northward between 30° and 55°, most likely 30° to 35°, in contrast to the 60° to 70° dip interpreted for the deeper portion of the fault. Pr...
Geological Society of America Bulletin | 1998
Jack K. Odum; William J. Stephenson; Kaye M. Shedlock; Thomas L. Pratt
The February 7, 1812, New Madrid, Missouri, earthquake (M [moment magnitude] 8) was the third and final large-magnitude event to rock the northern Mississippi Embayment during the winter of 1811–1812. Although ground shaking was so strong that it rang church bells, stopped clocks, buckled pavement, and rocked buildings up and down the eastern seaboard, little coseismic surface deformation exists today in the New Madrid area. The fault(s) that ruptured during this event have remained enigmatic. We have integrated geomorphic data documenting differential surficial deformation (supplemented by historical accounts of surficial deformation and earthquake-induced Mississippi River waterfalls and rapids) with the interpretation of existing and recently acquired seismic reflection data, to develop a tectonic model of the near-surface structures in the New Madrid, Missouri, area. This model consists of two primary components: a north-northwest–trending thrust fault and a series of northeast-trending, strike-slip, tear faults. We conclude that the Reelfoot fault is a thrust fault that is at least 30 km long. We also infer that tear faults in the near surface partitioned the hanging wall into subparallel blocks that have undergone differential displacement during episodes of faulting. The northeast-trending tear faults bound an area documented to have been uplifted at least 0.5 m during the February 7, 1812, earthquake. These faults also appear to bound changes in the surface density of epicenters that are within the modern seismicity, which is occurring in the stepover zone of the left-stepping right-lateral strike-slip fault system of the modern New Madrid seismic zone.
Geophysical Research Letters | 1997
James F. Dolan; Thomas L. Pratt
High-resolution seismic reflection data obtained across the Santa Monica fault in west Los Angeles reveal the near-surface geometry of this active, oblique-reverse-left-lateral fault. Although near-surface fault dips as great as 55° cannot be ruled out, we interpret the fault to dip northward at 30° to 35° in the upper few hundred meters, steepening to ≥65° at 1 to 2 km depth. A total of ∼180 m of near-field thrust separation (fault slip plus drag folding) has occurred on the fault since the development of a prominent erosional surface atop ∼1.2 Ma strata. In the upper 20 to 40 m strain is partitioned between the north-dipping main thrust strand and several closely spaced, near-vertical strike-slip faults observed in paleoseismologic trenches. The main thrust strand can be traced to within 20 m of the ground surface, suggesting that it breaks through to the surface in large earthquakes. Uplift of a ∼50,000-year-old alluvial fan surface indicates a short-term, dip-slip rate of ∼0.5 mm/yr, similar to the ∼0.6 mm/yr dip-slip rate derived from vertical separation of the oxygen isotope stage 5e marine terrace 3 km west of the study site. If the 0.6 mm/yr minimum, dip-slip-only rate characterizes the entire history of the fault, then the currently active strand of the Santa Monica fault probably began moving within the past ∼300,000 years.
Geology | 2012
Thomas L. Pratt
Seismicity in the New Madrid seismic zone (NMSZ) of the central United States is generally attributed to a stepover structure in which the Reelfoot thrust fault transfers slip between parallel strike-slip faults. However, some arms of the seismic zone do not fit this simple model. Comparison of the NMSZ with an analog sandbox model of a restraining stepover structure explains all of the arms of seismicity as only part of the extensive pattern of faults that characterizes stepover structures. Computer models show that the stepover structure may form because differences in the trends of lower crustal shearing and inherited upper crustal faults make a step between en echelon fault segments the easiest path for slip in the upper crust. The models predict that the modern seismicity occurs only on a subset of the faults in the New Madrid stepover structure, that only the southern part of the stepover structure ruptured in the A.D. 1811–1812 earthquakes, and that the stepover formed because the trends of older faults are not the same as the current direction of shearing.
Bulletin of the Seismological Society of America | 2006
Aggeliki Barberopoulou; A. Qamar; Thomas L. Pratt; William P. Steele
Analysis of strong-motion instrument recordings in Seattle, Washington, resulting from the 2002 M w 7.9 Denali, Alaska, earthquake reveals that amplification in the 0.2- to 1.0-Hz frequency band is largely governed by the shallow sediments both inside and outside the sedimentary basins beneath the Puget Lowland. Sites above the deep sedimentary strata show additional seismic-wave amplification in the 0.04- to 0.2-Hz frequency range. Surface waves generated by the M w 7.9 Denali, Alaska, earthquake of 3 November 2002 produced pronounced water waves across Washington state. The largest water waves coincided with the area of largest seismic-wave amplification underlain by the Seattle basin. In the current work, we present reports that show Lakes Union and Washington, both located on the Seattle basin, are susceptible to large water waves generated by large local earthquakes and teleseisms. A simple model of a water body is adopted to explain the generation of waves in water basins. This model provides reasonable estimates for the water-wave amplitudes in swimming pools during the Denali earthquake but appears to underestimate the waves observed in Lake Union.
Bulletin of the Seismological Society of America | 2006
Thomas L. Pratt; Thomas M. Brocher
Simple spectral ratio (ssr) and horizontal-to-vertical (h/v) site- response estimates at 47 sites in the Puget Lowland of Washington State document significant attenuation of 1.5- to 20-Hz shear waves within sedimentary basins there. Amplitudes of the horizontal components of shear-wave arrivals from three local earthquakes were used to compute ssrs with respect to the average of two bedrock sites and h/v spectral ratios with respect to the vertical component of the shear-wave arrivals at each site. ssr site-response curves at thick basin sites show peak amplifications of 2 to 6 at frequencies of 3 to 6 Hz, and decreasing spectral amplification with increasing frequency above 6 Hz. ssrs at nonbasin sites show a variety of shapes and larger resonance peaks. We attribute the spectral decay at frequencies above the amplification peak at basin sites to attenuation within the basin strata. Computing the frequency-independent, depth-dependent attenuation factor ( Q s ,int ) from the ssr spectral decay between 2 and 20 Hz gives values of 5 to 40 for shallow sedimentary deposits and about 250 for the deepest sedimentary strata (7 km depth). h/v site responses show less spectral decay than the ssr responses but contain many of the same resonance peaks. We hypothesize that the h/v method yields a flatter response across the frequency spectrum than ssrs because the h/v reference signal (vertical component of the shear-wave arrivals) has undergone a degree of attenuation similar to the horizontal component recordings. Correcting the ssr site responses for attenuation within the basins by removing the spectral decay improves agreement between ssr and h/v estimates.