Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Hiscott is active.

Publication


Featured researches published by John Hiscott.


Molecular and Cellular Biology | 1998

Virus-Dependent Phosphorylation of the IRF-3 Transcription Factor Regulates Nuclear Translocation, Transactivation Potential, and Proteasome-Mediated Degradation

Rongtuan Lin; Christophe Heylbroeck; Paula M. Pitha; John Hiscott

ABSTRACT The interferon regulatory factors (IRF) consist of a growing family of related transcription proteins first identified as regulators of the alpha beta interferon (IFN-α/β) gene promoters, as well as the interferon-stimulated response element (ISRE) of some IFN-stimulated genes. IRF-3 was originally identified as a member of the IRF family based on homology with other IRF family members and on binding to the ISRE of the ISG15 promoter. IRF-3 is expressed constitutively in a variety of tissues, and the relative levels of IRF-3 mRNA do not change in virus-infected or IFN-treated cells. In the present study, we demonstrate that following Sendai virus infection, IRF-3 is posttranslationally modified by protein phosphorylation at multiple serine and threonine residues, which are located in the carboxy terminus of IRF-3. A combination of IRF-3 deletion and point mutations localized the inducible phosphorylation sites to the region -ISNSHPLSLTSDQ- between amino acids 395 and 407; point mutation of residues Ser-396 and Ser-398 eliminated virus-induced phosphorylation of IRF-3 protein, although residues Ser-402, Thr-404, and Ser-405 were also targets. Phosphorylation results in the cytoplasm-to-nucleus translocation of IRF-3, DNA binding, and increased transcriptional activation. Substitution of the Ser-Thr sites with the phosphomimetic Asp generated a constitutively active form of IRF-3 that functioned as a very strong activator of promoters containing PRDI-PRDIII or ISRE regulatory elements. Phosphorylation also appears to represent a signal for virus-mediated degradation, since the virus-induced turnover of IRF-3 was prevented by mutation of the IRF-3 Ser-Thr cluster or by proteasome inhibitors. Interestingly, virus infection resulted in the association of IRF-3 with the CREB binding protein (CBP) coactivator, as detected by coimmunoprecipitation with anti-CBP antibody, an interaction mediated by the C-terminal domains of both proteins. Mutation of residues Ser-396 and Ser-398 in IRF-3 abrogated its binding to CBP. These results are discussed in terms of a model in which virus-inducible, C-terminal phosphorylation of IRF-3 alters protein conformation to permit nuclear translocation, association with transcriptional partners, and primary activation of IFN- and IFN-responsive genes.


Cancer Cell | 2003

VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents

David F. Stojdl; Brian D. Lichty; Benjamin R. tenOever; Jennifer M Paterson; Anthony T Power; Shane Knowles; Ricardo Marius; Jennifer Reynard; Laurent Poliquin; Harold Atkins; Earl G. Brown; Russell K. Durbin; Joan E. Durbin; John Hiscott; John C. Bell

Ideally, an oncolytic virus will replicate preferentially in malignant cells, have the ability to treat disseminated metastases, and ultimately be cleared by the patient. Here we present evidence that the attenuated vesicular stomatitis strains, AV1 and AV2, embody all of these traits. We uncover the mechanism by which these mutants are selectively attenuated in interferon-responsive cells while remaining highly lytic in 80% of human tumor cell lines tested. AV1 and AV2 were tested in a xenograft model of human ovarian cancer and in an immune competent mouse model of metastatic colon cancer. While highly attenuated for growth in normal mice, both AV1 and AV2 effected complete and durable cures in the majority of treated animals when delivered systemically.


Gene | 1999

Interferon regulatory factors: the next generation

Yael Mamane; Christophe Heylbroeck; Pierre Génin; Michèle Algarté; Marc J. Servant; Cécile LePage; Carmela DeLuca; Hakju Kwon; Rongtuan Lin; John Hiscott

Interferons are a large family of multifunctional secreted proteins involved in antiviral defense, cell growth regulation and immune activation. Viral infection induces transcription of multiple IFN genes, a response that is in part mediated by the interferon regulatory factors (IRFs). The initially characterized members IRF-1 and IRF-2 are now part of a growing family of transcriptional regulators that has expanded to nine members. The functions of the IRFs have also expanded to include distinct roles in biological processes such as pathogen response, cytokine signaling, cell growth regulation and hematopoietic development. The aim of this review is to provide an update on the novel discoveries in the area of IRF transcription factors and the important roles of the new generation of IRFs--particularly IRF-3, IRF-4 and IRF-7.


Journal of Clinical Investigation | 2001

Hostile takeovers: viral appropriation of the NF-kB pathway

John Hiscott; Hakju Kwon; Pierre Génin

Transcriptional regulators of the NF-kB/IkB family promote the expression of well over 100 target genes, the majority of which participate in the host immune response (1). These proteins include a multitude of cytokines and chemokines, receptors required for immune recognition, proteins involved in antigen presentation, and adhesion receptors involved in transmigration across blood vessels walls. Because of this extensive role in immune action, NF-kB has been termed the central mediator of the immune response. Gene knockout and other studies establish roles for NF-kB in the ontogeny of the immune system but also demonstrate that NF-kB participates at multiple steps during oncogenesis (2) and the regulation of programmed cell death (3).


Cytokine & Growth Factor Reviews | 1997

The growing family of interferon regulatory factors

Hannah Nguyen; John Hiscott; Paula M. Pitha

Interferons (IFN) exert their multiple biological effects through the induction of expression of over 30 genes encoding proteins with antiviral, antiproliferative and immunomodulatory functions. Among the many IFN-inducible proteins are the Interferon Regulatory Factors (IRFs), a family of transcription regulators, originally consisting of the well-characterized IRF-1 and IRF-2 proteins; the family has now expanded to over 10 members and is still growing. The present review provides a detailed description of recently characterized IRF family members. Studies analyzing IRF-expressing cell lines and IRF knockout mice reveal that each member of the IRF family exerts distinct roles in biological processes such as pathogen response, cytokine signalling, cell growth regulation and hematopoietic development. Understanding the molecular mechanisms by which the IRFs affect these important cellular events and IFN expression will contribute to a greater understanding of events leading to various viral, immune and malignant disease states and will suggest novel strategies for antiviral and immune modulatory therapy.


Journal of Virology | 2002

Transcriptional Profiling of Interferon Regulatory Factor 3 Target Genes: Direct Involvement in the Regulation of Interferon-Stimulated Genes

Nathalie Grandvaux; Marc J. Servant; Benjamin R. tenOever; Ganes C. Sen; Siddarth Balachandran; Glen N. Barber; Rongtuan Lin; John Hiscott

ABSTRACT Ubiquitously expressed interferon regulatory factor 3 (IRF-3) is directly activated after virus infection and functions as a key activator of the immediate-early alpha/beta interferon (IFN) genes, as well as the RANTES chemokine gene. In the present study, a tetracycline-inducible expression system expressing a constitutively active form of IRF-3 (IRF-3 5D) was combined with DNA microarray analysis to identify target genes regulated by IRF-3. Changes in mRNA expression profiles of 8,556 genes were monitored after Tet-inducible expression of IRF-3 5D. Among the genes upregulated by IRF-3 were transcripts for several known IFN-stimulated genes (ISGs). Subsequent analysis revealed that IRF-3 directly induced the expression of ISG56 in an IFN-independent manner through the IFN-stimulated responsive elements (ISREs) of the ISG56 promoter. These results demonstrate that, in addition to its role in the formation of a functional immediate-early IFN-β enhanceosome, IRF-3 is able to discriminate among ISRE-containing genes involved in the establishment of the antiviral state as a direct response to virus infection.


Journal of Biological Chemistry | 2007

Triggering the Innate Antiviral Response through IRF-3 Activation

John Hiscott

Rapid induction of type I interferon (IFN) expression is a central event in the establishment of the innate immune response against viral infection and requires the activation of multiple transcriptional proteins following engagement and signaling through Toll-like receptor-dependent and -independent pathways. The transcription factor interferon regulatory factor-3 (IRF-3) contributes to a first line of defense against viral infection by inducing the production of IFN-β that in turn amplifies the IFN response and the development of antiviral activity. In murine knock-out models, the absence of IRF-3 and the closely related IRF-7 ablates IFN production and increases viral pathogenesis, thus supporting a pivotal role for IRF-3/IRF-7 in the development of the host antiviral response.


Molecular and Cellular Biology | 1999

Structural and Functional Analysis of Interferon Regulatory Factor 3: Localization of the Transactivation and Autoinhibitory Domains

Rongtuan Lin; Yael Mamane; John Hiscott

ABSTRACT The interferon regulatory factor 3 (IRF-3) gene encodes a 55-kDa protein which is expressed constitutively in all tissues. In unstimulated cells, IRF-3 is present in an inactive cytoplasmic form; following Sendai virus infection, IRF-3 is posttranslationally modified by protein phosphorylation at multiple serine and threonine residues located in the carboxy terminus. Virus-induced phosphorylation of IRF-3 leads to cytoplasmic to nuclear translocation of phosphorylated IRF-3, association with the transcriptional coactivator CBP/p300, and stimulation of DNA binding and transcriptional activities of virus-inducible genes. Using yeast and mammalian one-hybrid analysis, we now demonstrate that an extended, atypical transactivation domain is located in the C terminus of IRF-3 between amino acids (aa) 134 and 394. We also show that the C-terminal domain of IRF-3 located between aa 380 and 427 participates in the autoinhibition of IRF-3 activity via an intramolecular association with the N-terminal region between aa 98 and 240. After Sendai virus infection, an intermolecular association between IRF-3 proteins is detected, demonstrating a virus-dependent formation of IRF-3 homodimers; this interaction is also observed in the absence of virus infection with a constitutively activated form of IRF-3. Substitution of the C-terminal Ser-Thr phosphorylation sites with the phosphomimetic Asp in the region ISNSHPLSLTSDQ between amino acids 395 and 407 [IRF-3(5D)], but not the adjacent S385 and S386 residues, generates a constitutively activated DNA binding form of IRF-3. In contrast, substitution of S385 and S386 with either Ala or Asp inhibits both DNA binding and transactivation activities of the IRF-3(5D) protein. These studies thus define the transactivation domain of IRF-3, two domains that participate in the autoinhibition of IRF-3 activity, and the regulatory phosphorylation sites controlling IRF-3 dimer formation, DNA binding activity, and association with the CBP/p300 coactivator.


Molecular and Cellular Biology | 1999

Essential Role of Interferon Regulatory Factor 3 in Direct Activation of RANTES Chemokine Transcription

Rongtuan Lin; Christophe Heylbroeck; Pierre Génin; Paula M. Pitha; John Hiscott

ABSTRACT Localized and systemic cytokine production in virus-infected cells play an important role in the outcome of viral infection and pathogenicity. Activation of the interferon regulatory factors (IRF) in turn is a critical mediator of cytokine gene transcription. Recent studies have focused on the 55-kDa IRF-3 gene product as a direct transcriptional regulator of type 1 interferon (IFN-α and IFN-β) activation in response to virus infection. Virus infection induces phosphorylation of IRF-3 on specific C-terminal serine residues and permits cytoplasmic-to-nuclear translocation of IRF-3, activation of DNA binding and transactivation potential, and association with the CBP/p300 coactivator. We previously generated constitutively active [IRF-3(5D)] and dominant-negative forms of IRF-3 that control IFN-β and IFN-α gene expression. In an effort to characterize the range of immunoregulatory genes controlled by IRF-3, we now demonstrate that endogenous human RANTES gene transcription is directly induced in tetracycline-inducible IRF-3(5D)-expressing cells or paramyxovirus-infected cells. We also show that a dominant-negative IRF-3 mutant inhibits virus-induced expression of the RANTES promoter. Specific mutagenesis of overlapping ISRE-like sites located between nucleotides −123 and −96 in the RANTES promoter reduces virus-induced and IRF-3-dependent activation. These studies broaden the range of IRF-3 immunoregulatory target genes to include at least one member of the chemokine superfamily.


Molecular and Cellular Biology | 2000

Selective DNA Binding and Association with the CREB Binding Protein Coactivator Contribute to Differential Activation of Alpha/Beta Interferon Genes by Interferon Regulatory Factors 3 and 7

Rongtuan Lin; Pierre Génin; Yael Mamane; John Hiscott

ABSTRACT Recent studies implicate the interferon (IFN) regulatory factors (IRF) IRF-3 and IRF-7 as key activators of the alpha/beta IFN (IFN-α/β) genes as well as the RANTES chemokine gene. Using coexpression analysis, the human IFNB, IFNA1, and RANTES promoters were stimulated by IRF-3 coexpression, whereas the IFNA4, IFNA7, and IFNA14 promoters were preferentially induced by IRF-7 only. Chimeric proteins containing combinations of different IRF-7 and IRF-3 domains were also tested, and the results provided evidence of distinct DNA binding properties of IRF-3 and IRF-7, as well as a preferential association of IRF-3 with the CREB binding protein (CBP) coactivator. Interestingly, some of these fusion proteins led to supraphysiological levels of IFN promoter activation. DNA binding site selection studies demonstrated that IRF-3 and IRF-7 bound to the 5′-GAAANNGAAANN-3′ consensus motif found in many virus-inducible genes; however, a single nucleotide substitution in either of the GAAA half-site motifs eliminated IRF-3 binding and transactivation activity but did not affect IRF-7 interaction or transactivation activity. These studies demonstrate that IRF-3 possesses a restricted DNA binding site specificity and interacts with CBP, whereas IRF-7 has a broader DNA binding specificity that contributes to its capacity to stimulate delayed-type IFN gene expression. These results provide an explanation for the differential regulation of IFN-α/β gene expression by IRF-3 and IRF-7 and suggest that these factors have complementary rather than redundant roles in the activation of the IFN-α/β genes.

Collaboration


Dive into the John Hiscott's collaboration.

Top Co-Authors

Avatar

Rongtuan Lin

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suzanne Paz

Jewish General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Génin

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge