Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Génin is active.

Publication


Featured researches published by Pierre Génin.


Gene | 1999

Interferon regulatory factors: the next generation

Yael Mamane; Christophe Heylbroeck; Pierre Génin; Michèle Algarté; Marc J. Servant; Cécile LePage; Carmela DeLuca; Hakju Kwon; Rongtuan Lin; John Hiscott

Interferons are a large family of multifunctional secreted proteins involved in antiviral defense, cell growth regulation and immune activation. Viral infection induces transcription of multiple IFN genes, a response that is in part mediated by the interferon regulatory factors (IRFs). The initially characterized members IRF-1 and IRF-2 are now part of a growing family of transcriptional regulators that has expanded to nine members. The functions of the IRFs have also expanded to include distinct roles in biological processes such as pathogen response, cytokine signaling, cell growth regulation and hematopoietic development. The aim of this review is to provide an update on the novel discoveries in the area of IRF transcription factors and the important roles of the new generation of IRFs--particularly IRF-3, IRF-4 and IRF-7.


Journal of Clinical Investigation | 2001

Hostile takeovers: viral appropriation of the NF-kB pathway

John Hiscott; Hakju Kwon; Pierre Génin

Transcriptional regulators of the NF-kB/IkB family promote the expression of well over 100 target genes, the majority of which participate in the host immune response (1). These proteins include a multitude of cytokines and chemokines, receptors required for immune recognition, proteins involved in antigen presentation, and adhesion receptors involved in transmigration across blood vessels walls. Because of this extensive role in immune action, NF-kB has been termed the central mediator of the immune response. Gene knockout and other studies establish roles for NF-kB in the ontogeny of the immune system but also demonstrate that NF-kB participates at multiple steps during oncogenesis (2) and the regulation of programmed cell death (3).


Molecular and Cellular Biology | 1999

Essential Role of Interferon Regulatory Factor 3 in Direct Activation of RANTES Chemokine Transcription

Rongtuan Lin; Christophe Heylbroeck; Pierre Génin; Paula M. Pitha; John Hiscott

ABSTRACT Localized and systemic cytokine production in virus-infected cells play an important role in the outcome of viral infection and pathogenicity. Activation of the interferon regulatory factors (IRF) in turn is a critical mediator of cytokine gene transcription. Recent studies have focused on the 55-kDa IRF-3 gene product as a direct transcriptional regulator of type 1 interferon (IFN-α and IFN-β) activation in response to virus infection. Virus infection induces phosphorylation of IRF-3 on specific C-terminal serine residues and permits cytoplasmic-to-nuclear translocation of IRF-3, activation of DNA binding and transactivation potential, and association with the CBP/p300 coactivator. We previously generated constitutively active [IRF-3(5D)] and dominant-negative forms of IRF-3 that control IFN-β and IFN-α gene expression. In an effort to characterize the range of immunoregulatory genes controlled by IRF-3, we now demonstrate that endogenous human RANTES gene transcription is directly induced in tetracycline-inducible IRF-3(5D)-expressing cells or paramyxovirus-infected cells. We also show that a dominant-negative IRF-3 mutant inhibits virus-induced expression of the RANTES promoter. Specific mutagenesis of overlapping ISRE-like sites located between nucleotides −123 and −96 in the RANTES promoter reduces virus-induced and IRF-3-dependent activation. These studies broaden the range of IRF-3 immunoregulatory target genes to include at least one member of the chemokine superfamily.


Molecular and Cellular Biology | 2000

Selective DNA Binding and Association with the CREB Binding Protein Coactivator Contribute to Differential Activation of Alpha/Beta Interferon Genes by Interferon Regulatory Factors 3 and 7

Rongtuan Lin; Pierre Génin; Yael Mamane; John Hiscott

ABSTRACT Recent studies implicate the interferon (IFN) regulatory factors (IRF) IRF-3 and IRF-7 as key activators of the alpha/beta IFN (IFN-α/β) genes as well as the RANTES chemokine gene. Using coexpression analysis, the human IFNB, IFNA1, and RANTES promoters were stimulated by IRF-3 coexpression, whereas the IFNA4, IFNA7, and IFNA14 promoters were preferentially induced by IRF-7 only. Chimeric proteins containing combinations of different IRF-7 and IRF-3 domains were also tested, and the results provided evidence of distinct DNA binding properties of IRF-3 and IRF-7, as well as a preferential association of IRF-3 with the CREB binding protein (CBP) coactivator. Interestingly, some of these fusion proteins led to supraphysiological levels of IFN promoter activation. DNA binding site selection studies demonstrated that IRF-3 and IRF-7 bound to the 5′-GAAANNGAAANN-3′ consensus motif found in many virus-inducible genes; however, a single nucleotide substitution in either of the GAAA half-site motifs eliminated IRF-3 binding and transactivation activity but did not affect IRF-7 interaction or transactivation activity. These studies demonstrate that IRF-3 possesses a restricted DNA binding site specificity and interacts with CBP, whereas IRF-7 has a broader DNA binding specificity that contributes to its capacity to stimulate delayed-type IFN gene expression. These results provide an explanation for the differential regulation of IFN-α/β gene expression by IRF-3 and IRF-7 and suggest that these factors have complementary rather than redundant roles in the activation of the IFN-α/β genes.


Journal of Interferon and Cytokine Research | 1999

Triggering the interferon response: the role of IRF-3 transcription factor.

John Hiscott; Paula M. Pitha; Pierre Génin; Hannah Nguyen; Christophe Heylbroeck; Yael Mamane; Michèle Algarté; Rongtuan Lin

The interferon (IFN) regulatory factors (IRF) consist of a growing family of related transcription proteins first identified as regulators of the IFN-alpha/beta gene promoters, as well as the IFN-stimulated response element (ISRE) of some IFN-stimulated genes. IRF-3 was originally identified as a member of the IRF family based on homology with other IRF family members and on binding to the ISRE of the IFN-stimulated gene 15 (ISG15) promoter. Several recent studies have focused attention on the unique molecular properties of IRF-3 and its role in the regulation of IFN gene expression. IRF-3 is expressed constitutively in a variety of tissues, and the relative levels of IRF-3 mRNA do not change in virus-infected or IFN-treated cells. Following virus infection, IRF-3 is posttranslationally modified by protein phosphorylation at multiple serine and threonine residues, located in the carboxy-terminus of IRF-3. Phosphorylation causes the cytoplasmic to nuclear translocation of IRF-3, stimulation of DNA binding, and increased transcriptional activation, mediated through the association of IRF-3 with the CBP/p300 coactivator. The purpose of this review is to summarize recent investigations demonstrating the important role of IRF-3 in cytokine gene transcription. These studies provide the framework for a model in which virus-dependent phosphorylation of IRF-3 alters protein conformation to permit nuclear translocation, association with transcriptional partners, and primary activation of IFN and IFN-responsive genes.


Journal of Immunology | 2000

Regulation of RANTES Chemokine Gene Expression Requires Cooperativity Between NF-κB and IFN-Regulatory Factor Transcription Factors

Pierre Génin; Michèle Algarté; Philippe Roof; Rongtuan Lin; John Hiscott

Virus infection of host cells activates a set of cellular genes, including cytokines, IFNs, and chemokines, involved in antiviral defense and immune activation. Previous studies demonstrated that virus-induced transcriptional activation of a member of the human CC-chemokine RANTES required activation of the latent transcription factors IFN-regulatory factor (IRF)-3 and NF-κB via posttranslational phosphorylation. In the present study, we further characterized the regulatory control of RANTES transcription during virus infection using in vivo genomic footprinting analyses. IRF-3, the related IRF-7, and NF-κB are identified as important in vivo binding factors required for the cooperative induction of RANTES transcription after virus infection. Using fibroblastic or myeloid cells, we demonstrate that the kinetics and strength of RANTES virus-induced transcription are highly dependent on the preexistence of IRFs and NF-κB. Use of dominant negative mutants of either IκB-α or IRF-3 demonstrate that disruption of either pathway dramatically abolishes the ability of the other to bind and activate RANTES expression. Furthermore, coexpression of IRF-3, IRF-7, and p65/p50 leads to synergistic activation of RANTES promoter transcription. These studies reveal a model of virus-mediated RANTES promoter activation that involves cooperative synergism between IRF-3/IRF-7 and NF-κB factors.


Oncogene | 2001

HHV-8 encoded vIRF-1 represses the interferon antiviral response by blocking IRF-3 recruitment of the CBP/p300 coactivators.

Rongtuan Lin; Pierre Génin; Yael Mamane; Marco Sgarbanti; Angela Battistini; William J. Harrington; Glen N. Barber; John Hiscott

Human herpes virus 8 (HHV-8) has developed unique mechanisms for altering cellular proliferative and apoptotic control pathways by incorporating viral homologs to several cellular regulatory genes into its genome. One of the important pirated genes encoded by the ORF K9 reading frame is a viral homolog of the interferon regulatory factors (IRF), a family of cellular transcription proteins that regulates expression of genes involved in pathogen response, immune modulation and cell proliferation. vIRF-1 has been shown to downregulate the interferon- and IRF-mediated transcriptional activation of ISG and murine IFNA4 gene promoters. In this study we demonstrate that vIRF-1 efficiently inhibited virus-induced expression of endogenous interferon B, CC chemokine RANTES and CXC chemokine IP-10 genes. Co-expression analysis revealed that vIRF-1 selectively blocked IRF-3 but not IRF-7-mediated transactivation. vIRF-1 was able to bind to both IRF-3 and IRF-7 in vivo as detected by coimmunoprecipitation analysis, but did not affect IRF-3 dimerization, nuclear translocation and DNA binding activity. Rather, vIRF-1 interacted with the CBP/p300 coactivators and efficiently inhibited the formation of transcriptionally competent IRF-3-CBP/p300 complexes. These results illustrate that vIRF-1 is able to block the early stages of the IFN response to virus infection by interfering with the activation of IRF-3 responsive, immediate early IFN genes.


Journal of Immunology | 2002

Regulation of IFN Regulatory Factor 4 Expression in Human T Cell Leukemia Virus-I-Transformed T Cells

Sonia Sharma; Nathalie Grandvaux; Yael Mamane; Pierre Génin; Nazli Azimi; Thomas Waldmann; John Hiscott

IFN regulatory factor (IRF)-4 is a lymphoid/myeloid-restricted member of the IRF transcription factor family that plays an essential role in the homeostasis and function of mature lymphocytes. IRF-4 expression is tightly regulated in resting primary T cells and is transiently induced at the mRNA and protein levels after activation by Ag-mimetic stimuli such as TCR cross-linking or treatment with phorbol ester and calcium ionophore (PMA/ionomycin). However, IRF-4 is constitutively upregulated in human T cell leukemia virus type I (HTLV-I) infected T cells as a direct gene target for the HTLV-I Tax oncoprotein. In this study we demonstrate that chronic IRF-4 expression in HTLV-I-infected T lymphocytes is associated with a leukemic phenotype, and we examine the mechanisms by which continuous production of IRF-4 is achieved in HTLV-I-transformed T cells. IRF-4 expression in HTLV-1-infected cells is driven through activation of the NF-κB and NF-AT pathways, resulting in the binding of p50, p65, and c-Rel to the κB1 element and p50, c-Rel, and NF-ATp to the CD28RE element within the −617 to −209 region of the IRF-4 promoter. Furthermore, mutation of either the κB1 or CD28RE sites blocks Tax-mediated transactivation of the human IRF-4 promoter in T cells. These experiments constitute the first detailed analysis of human IRF-4 transcriptional regulation within the context of HTLV-I infection and transformation of CD4+ T lymphocytes.


Molecular and Cellular Biology | 2009

Differential Regulation of Human Interferon A Gene Expression by Interferon Regulatory Factors 3 and 7

Pierre Génin; Rongtuan Lin; John Hiscott; Ahmet Civas

ABSTRACT Differential expression of the human interferon A (IFN-A) gene cluster is modulated following paramyxovirus infection by the relative amounts of active interferon regulatory factor 3 (IRF-3) and IRF-7. IRF-3 expression activates predominantly IFN-A1 and IFN-B, while IRF-7 expression induces multiple IFN-A genes. IFN-A1 gene expression is dependent on three promoter proximal IRF elements (B, C, and D modules, located at positions −98 to −45 relative to the mRNA start site). IRF-3 binds the C module of IFN-A1, while other IFN-A gene promoters are responsive to the binding of IRF-7 to the B and D modules. Maximal expression of IFN-A1 is observed with complete occupancy of the three modules in the presence of IRF-7. Nucleotide substitutions in the C modules of other IFN-A genes disrupt IRF-3-mediated transcription, whereas a G/A substitution in the D modules enhances IRF7-mediated expression. IRF-3 exerts dual effects on IFN-A gene expression, as follows: a synergistic effect with IRF-7 on IFN-A1 expression and an inhibitory effect on other IFN-A gene promoters. Chromatin immunoprecipitation experiments reveal that transient binding of both IRF-3 and IRF-7, accompanied by CBP/p300 recruitment to the endogenous IFN-A gene promoters, is associated with transcriptional activation, whereas a biphasic recruitment of IRF-3 and CBP/p300 represses IFN-A gene expression. This regulatory mechanism contributes to differential expression of IFN-A genes and may be critical for alpha interferon production in different cell types by RIG-I-dependent signals, leading to innate antiviral immune responses.


Molecular and Cellular Biology | 1999

Identification by In Vivo Genomic Footprinting of a Transcriptional Switch Containing NF-κB and Sp1 That Regulates the IκBα Promoter

Michèle Algarté; Hakju Kwon; Pierre Génin; John Hiscott

ABSTRACT In unstimulated cells, NF-κB transcription factors are retained in the cytoplasm by inhibitory IκB proteins. Upon stimulation by multiple inducers including cytokines or viruses, IκBα is rapidly phosphorylated and degraded, resulting in the release of NF-κB and the subsequent increase in NF-κB-regulated gene expression. IκBα gene expression is also regulated by an NF-κB autoregulatory mechanism, via NF-κB binding sites in the IκBα promoter. In previous studies, tetracycline-inducible expression of transdominant repressors of IκBα (TD-IκBα) progressively decreased endogenous IκBα protein levels. In the present study, we demonstrate that expression of TD-IκBα blocked phorbol myristate acetate-phytohemagglutinin or tumor necrosis factor alpha-induced IκBα gene transcription and abolished NF-κB DNA binding activity, due to the continued cytoplasmic sequestration of RelA(p65) by TD-IκBα. In vivo genomic footprinting revealed stimulus-responsive protein-DNA binding not only to the −63 to −53 κB1 site but also to the adjacent −44 to −36 Sp1 site of the IκBα promoter. In vivo protection of both sites was inhibited by tetracycline-inducible TD-IκBα expression. Prolonged NF-κB binding and a temporal switch in the composition of NF-κB complexes bound to the −63 to −53 κB1 site of the IκBα promoter were also observed; with time after induction, decreased levels of transcriptionally active p50-p65 and increased p50–c-Rel heterodimers were detected at the κB1 site. Mutation of either the κB1 site or the Sp1 site abolished transcription factor binding to the respective sites and the inducibility of the IκBα promoter in transient transfection studies. These observations provide the first in vivo characterization of a promoter proximal transcriptional switch involving NF-κB and Sp1 that is essential for autoregulation of the IκBα promoter.

Collaboration


Dive into the Pierre Génin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge