Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Imbrie is active.

Publication


Featured researches published by John Imbrie.


Quaternary Research | 1987

Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy

Douglas G. Martinson; Nicklas G. Pisias; James D. Hays; John Imbrie; Theodore C. Moore; Nicholas J Shackleton

Using the concept of “orbital tuning”, a continuous, high-resolution deep-sea chronostratigraphy has been developed spanning the last 300,000 yr. The chronology is developed using a stacked oxygen-isotope stratigraphy and four different orbital tuning approaches, each of which is based upon a different assumption concerning the response of the orbital signal recorded in the data. Each approach yields a separate chronology. The error measured by the standard deviation about the average of these four results (which represents the “best” chronology) has an average magnitude of only 2500 yr. This small value indicates that the chronology produced is insensitive to the specific orbital tuning technique used. Excellent convergence between chronologies developed using each of five different paleoclimatological indicators (from a single core) is also obtained. The resultant chronology is also insensitive to the specific indicator used. The error associated with each tuning approach is estimated independently and propagated through to the average result. The resulting error estimate is independent of that associated with the degree of convergence and has an average magnitude of 3500 yr, in excellent agreement with the 2500-yr estimate. Transfer of the final chronology to the stacked record leads to an estimated error of ±1500 yr. Thus the final chronology has an average error of ±5000 yr.


Science | 1976

Variations in the Earth's Orbit: Pacemaker of the Ice Ages

James D. Hays; John Imbrie; Nicholas J Shackleton

1) Three indices of global climate have been monitored in the record of the past 450,000 years in Southern Hemisphere ocean-floor sediments. 2) Over the frequency range 10–4 to 10–5 cycle per year, climatic variance of these records is concentrated in three discrete spectral peaks at periods of 23,000, 42,000, and approximately 100,000 years. These peaks correspond to the dominant periods of the earths solar orbit, and contain respectively about 10, 25, and 50 percent of the climatic variance. 3) The 42,000-year climatic component has the same period as variations in the obliquity of the earths axis and retains a constant phase relationship with it. 4) The 23,000-year portion of the variance displays the same periods (about 23,000 and 19,000 years) as the quasi-periodic precession index. 5) The dominant, 100,000-year climatic [See table in the PDF file] component has an average period close to, and is in phase with, orbital eccentricity. Unlike the correlations between climate and the higher-frequency orbital variations (which can be explained on the assumption that the climate system responds linearly to orbital forcing), an explanation of the correlation between climate and eccentricity probably requires an assumption of nonlinearity. 6) It is concluded that changes in the earths orbital geometry are the fundamental cause of the succession of Quaternary ice ages. 7) A model of future climate based on the observed orbital-climate relationships, but ignoring anthropogenic effects, predicts that the long-term trend over the next sevem thousand years is toward extensive Northern Hemisphere glaciation.


Science | 1980

Modeling the Climatic Response to Orbital Variations

John Imbrie; John Z. Imbrie

According to the astronomical theory of climate, variations in the earths orbit are the fundamental cause of the succession of Pleistocene ice ages. This article summarizes how the theory has evolved since the pioneer studies of James Croll and Milutin Milankovitch, reviews recent evidence that supports the theory, and argues that a major opportunity is at hand to investigate the physical mechanisms by which the climate system responds to orbital forcing. After a survey of the kinds of models that have been applied to this problem, a strategy is suggested for building simple, physically motivated models, and a time-dependent model is developed that simulates the history of planetary glaciation for the past 500,000 years. Ignoring anthropogenic and other possible sources of variation acting at frequencies higher than one cycle per 19,000 years, this model predicts that the long-term cooling trend which began some 6000 years ago will continue for the next 23,000 years.


Paleoceanography | 1992

On the Structure and Origin of Major Glaciation Cycles 1. Linear Responses to Milankovitch Forcing

John Imbrie; Edward A. Boyle; Steve Clemens; A. Duffy; W. R. Howard; George Kukla; John E. Kutzbach; Douglas G. Martinson; A. McIntyre; Alan C. Mix; B. Molfino; Joseph J. Morley; Larry C. Peterson; Nicklas G. Pisias; Warren L. Prell; Maureen E. Raymo; Nicholas J Shackleton; J. R. Toggweiler

Time series of ocean properties provide a measure of global ice volume and monitor key features of the wind-driven and density-driven circulations over the past 400,000 years. Cycles with periods near 23,000, 41,000, and 100,000 years dominate this climatic narrative. When the narrative is examined in a geographic array of time series, the phase of each climatic oscillation is seen to progress through the system in essentially the same geographic sequence in all three cycles. We argue that the 23,000- and 41,000-year cycles of glaciation are continuous, linear responses to orbitally driven changes in the Arctic radiation budget; and we use the phase progression in each climatic cycle to identify the main pathways along which the initial, local responses to radiation are propagated by the atmosphere and ocean. Early in this progression, deep waters of the Southern Ocean appear to act as a carbon trap. To stimulate new observations and modeling efforts, we offer a process model that gives a synoptic view of climate at the four end-member states needed to describe the systems evolution, and we propose a dynamic system model that explains the phase progression along causal pathways by specifying inertial constants in a chain of four subsystems. “Solutions to problems involving systems of such complexity are not born full grown like Athena from the head of Zeus. Rather they evolve slowly, in stages, each of which requires a pause to examine data at great lengths in order to guarantee a sure footing and to properly choose the next step.” —Victor P. Starr


Paleoceanography | 1993

On the structure and origin of major glaciation cycles 2. The 100,000‐year cycle

John Imbrie; André Berger; Edward A. Boyle; Steve Clemens; A. Duffy; W. R. Howard; George Kukla; John E. Kutzbach; Doug Martinson; A. McIntyre; Alan C. Mix; B. Molfino; J. J. Morley; Larry C. Peterson; Nicklas G. Pisias; Warren L. Prell; Maureen E. Raymo; N.J. Shackleton; J. R. Toggweiler

Climate over the past million years has been dominated by glaciation cycles with periods near 23,000, 41,000, and 100,000 years. In a linear version of the Milankovitch theory, the two shorter cycles can be explained as responses to insolation cycles driven by precession and obliquity. But the 100,000-year radiation cycle (arising from eccentricity variation) is much too small in amplitude and too late in phase to produce the corresponding climate cycle by direct forcing. We present phase observations showing that the geographic progression of local responses over the 100,000-year cycle is similar to the progression in the other two cycles, implying that a similar set of internal climatic mechanisms operates in all three. But the phase sequence in the 100,000-year cycle requires a source of climatic inertia having a time constant (similar to 15,000 years) much larger than the other cycles (similar to 5,000 years). Our conceptual model identifies massive northern hemisphere ice sheets as this larger inertial source. When these ice sheets, forced by precession and obliquity, exceed a critical size, they cease responding as linear Milankovitch slaves and drive atmospheric and oceanic responses that mimic the externally forced responses. In our model, the coupled system acts as a nonlinear amplifier that is particularly sensitive to eccentricity-driven modulations in the 23,000-year sea level cycle. During an interval when sea level is forced upward from a major low stand by a Milankovitch response acting either alone or in combination with an internally driven, higher-frequency process, ice sheets grounded on continental shelves become unstable, mass wasting accelerates, and the resulting deglaciation sets the phase of one wave in the train of 100,000-year oscillations. Whether a glacier or ice sheet influences the climate depends very much on the scale....The interesting aspect is that an effect on the local climate can still make an ice mass grow larger and larger, thereby gradually increasing its radius of influence.


Quaternary Research | 1984

The last interglacial ocean

William F. Ruddiman; Rose Marie L. Cline; James D. Hays; Warren L. Prell; Theodore C Moore; Nilva G. Kipp; Barbara Molfino; George H. Denton; Terence J. Hughes; William L. Balsam; Charlotte A. Brunner; Jean-Claude Duplessy; James L. Fastook; John Imbrie; Lloyd D. Keigwin; Thomas B. Kellogg; Andrew McIntyre; R. K. Matthews; Alan C Mix; Joseph J. Morley; Nicholas J Shackleton; S S Streeter; Peter R. Thompson

The final effort of the CLIMAP project was a study of the last interglaciation, a time of minimum ice volume some 122,000 yr ago coincident with the Substage 5e oxygen isotopic minimum. Based on detailed oxygen isotope analyses and biotic census counts in 52 cores across the world ocean, last interglacial sea-surface temperatures (SST) were compared with those today. There are small SST departures in the mid-latitude North Atlantic (warmer) and the Gulf of Mexico (cooler). The eastern boundary currents of the South Atlantic and Pacific oceans are marked by large SST anomalies in individual cores, but their interpretations are precluded by no-analog problems and by discordancies among estimates from different biotic groups. In general, the last interglacial ocean was not significantly different from the modern ocean. The relative sequencing of ice decay versus oceanic warming on the Stage 6/5 oxygen isotopic transition and of ice growth versus oceanic cooling on the Stage 5e/5d transition was also studied. In most of the Southern Hemisphere, the oceanic response marked by the biotic census counts preceded (led) the global ice-volume response marked by the oxygen-isotope signal by several thousand years. The reverse pattern is evident in the North Atlantic Ocean and the Gulf of Mexico, where the oceanic response lagged that of global ice volume by several thousand years. As a result, the very warm temperatures associated with the last interglaciation were regionally diachronous by several thousand years. These regional lead-lag relationships agree with those observed on other transitions and in long-term phase relationships; they cannot be explained simply as artifacts of bioturbational translations of the original signals.


NATO advanced research workshop on climate and geo-sciences: a challenge for science and society in the 21 st. century | 1989

Oceanic Response to Orbital Forcing in the Late Quaternary: Observational and Experimental Strategies

John Imbrie; Andrew McIntyre; Alan C. Mix

Observations on deep-sea cores demonstrate that late Pleistocene climate is dominated by three broad-band cycles centered near periods of 23 ky, 41 ky, and 100 ky. These cycles permeate the global system, and include changes in the atmosphere, cryosphere, surface ocean, and deep ocean. The periods of these climatic cycles match orbital cycles of precession, obliquity, and eccentricity; and each orbit-climate pair is significantly correlated (coherent). These observations may be explained in different ways. We review various models and conclude that the climatic cycles can be explained as an interaction between orbitally forced and internally driven oscillations of the climate system. Depending on the cycle and model, the external forcing may influence climate either as part of a driving mechanism which determines both the amplitude and phase of the cycle, or as a pacing mechanism which sets the phase of an internal oscillation. Our goal is to search climatic data for clues about the mechanisms which operate within the climate system on orbital time scales. Our strategy is patterned after previous investigations which partition the climatic record into cyclic components, record the phase of system responses in each cycle, and examine these phase sequences for clues about the chain of causal mechanisms.


Paleoceanography | 1991

A high-resolution Late Quaternary upwelling record from the anoxic Cariaco Basin, Venezuela

Larry C. Peterson; Jonathan T. Overpeck; Nilva G. Kipp; John Imbrie

Results are presented of a high-resolution study of the planktonic foraminiferal faunas from two piston cores recovered from the Cariaco Basin in the southern Caribbean Sea. The Cariaco Basin is a small anoxic marine basin on the northern continental margin of Venezuela in an area today characterized by both seasonal trade wind-induced upwelling and pronounced dry and wet seasons. Our data indicate that large changes in the intensity of upwelling, and hence trade wind strength, occurred in this region during the last glacial-interglacial transition and throughout the Holocene. During the last glacial lowstand of sea level, the Cariaco Basin was effectively isolated from the open Caribbean along its northern margin by the then largely emergent Tortuga Bank. Oxic conditions existed in the deep Cariaco Basin at this time, and surface productivity was low. About 12,600 years ago, the abrupt initiation of strong upwelling over the basin and the onset of permanent anoxia in the deep waters are coincident with the rapid rise of sea level that accompanied the peak interval of meltwater discharge from the Laurentide Ice Sheet into the Gulf of Mexico. Strong upwelling between 12,600 and about 10,000 years ago may be related to intensified trade winds resulting, in part, from cooler sea surface temperatures in the Caribbean and Gulf of Mexico. After about 10,000 years ago, upwelling intensity was reduced, though highly variable. A preliminary frequency domain analysis of the Holocene portion of the Cariaco Basin time series suggests that solar forcing may explain a significant component of the century-scale variability observed in the record of upwelling and trade wind strength.


Geological Society of America Bulletin | 1964

Vector Analysis of Heavy-Mineral Data

John Imbrie; Tjeerd H. van Andel

In sedimentary petrology data are often in the form of measurements of several variables on numerous samples. If the set of data is large and the underlying causal structure obscure, factor and vector analysis can be an important aid in revealing simple patterns in complex information. Mathematically, these approaches treat each variable or each sample as a vector and resolve it into a small number of component vectors. Vectors may represent variables (R-mode) or samples (Q-mode). Factor analysis resolves vectors of raw data into theoretical vectors; vector analysis resolves them into selected data vectors that represent actually observed, compositionally extreme end-member samples (Q-mode) or into variables characterized by the maximum observed linear independence (R-mode). The method has been programmed for various large, high-speed computers. Usefulness of the approach is demonstrated by application to two case histories: heavy mineral provenance studies of Recent sediments in the Gulf of California, and on the Orinoco-Guayana Shelf. Q-mode analysis of these case histories represents quite different but reasonably common situations. In the Gulf of California, most mineral assemblages are derived from nearby, petrographically simple sources and are dominated by only a few minerals. Mixing during transportation is minor, and the system can easily be defined in terms of a few mineralogically distinct end members. Vector analysis of this system yields results similar to those obtained by conventional inspection of the raw data, although more significant detail is revealed and end members are objectively and re-producibly defined. The Orinoco-Guayana Shelf, on the other hand, possesses remote and petrographically complex sources, and mixing of assemblages during long-distance transportation is common. All mineral assemblages are complex and variable and only quantitatively different. Obvious end members are lacking. Vector analysis yields a mineral distribution pattern greatly different from that obtained by inspection of the raw data. The vector pattern appears to be the more meaningful one when interpreted in terms of zones of littoral transportation moving landward during the post-Pleistocene rise of sea level.


Journal of the Geological Society | 1985

A theoretical framework for the Pleistocene ice ages

John Imbrie

This paper reviews 150 years of progress towards understanding the succession of Pleistocene ice ages. Emphasis is placed on the process of explaining forced variations in climate which occur in the Milankovitch band (periods from 10000 to 400 000 years), where astronomical forcing functions are clearly identified and where the amplitudes of climatic change are large. An hierarchy of explanatory models is employed, including a statistical model that uses gain and phase terms to parameterize the climatic response to orbital forcing in several narrow frequency bands. This type of model accounts for a substantial fraction of the observed temporal variations of δ18O over the past 800 000 years. Experiments using the model suggest that a change in the system response occurred about 400 000 years ago. The problem of explaining climatic variations in other frequency bands is briefly reviewed. In the decadal band (l0–400 years), there is good evidence of volcanic forcing, solar forcing, and tidal forcing, but much of the observed pattern is presumed to reflect free variations. In the millenium band (400 to 10 000 years), significant climatic changes occur at periods ranging from 1000 to 3000 years. Their cause remains a challenging problem. Over the tectonic band (more than 400 000 years), volcanic fluxes, continental elevation, and continental position are the most likely forcing functions of the observed climatic changes.

Collaboration


Dive into the John Imbrie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan C. Mix

Oregon State University

View shared research outputs
Top Co-Authors

Avatar

Andrew McIntyre

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Kutzbach

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge