Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John J. Dubé is active.

Publication


Featured researches published by John J. Dubé.


Medicine and Science in Sports and Exercise | 2003

Concurrent validation of the OMNI perceived exertion scale for resistance exercise.

R. J. Robertson; Fredric L. Goss; Jason Rutkowski; Brooke Lenz; Curt B. Dixon; Jeffrey M. Timmer; Krisi M. Frazee; John J. Dubé; Joseph L. Andreacci

UNLABELLED The criterion variables were total weight lifted (Wttot ) determined separately for women and men during BC and KE, and blood lactic acid concentration ([Hla]) determined for a combined female ( N = 10) and male ( N = 10) subset during BC. Subjects performed three separate sets of 4, 8, and 12 repetitions for BC and KE at 65% one-repetition maximum. Rating of perceived exertion for the active muscles (RPE-AM) was measured during the mid and final repetition and RPE for the overall body (RPE-O) during the final repetition. : For both female and male groups across the three sets: (a) RPE-AM ranged from 3.6 to 8.2 for BC and 5.1 to 9.6 for KE and (b) RPE-O ranged from 2.4 to 6.7 for BC and 4.2 to 7.6 for KE. Positive linear regressions ranged from r = 0.79 to 0.91 ( P < 0.01) between Wttot and RPE-AM (mid), RPE-AM (final), and RPE-O for both BC and KE in both sex groupings. A positive ( P < 0.01) linear regression was found between [Hla] and RPE-AM (final) (r = 0.87) during BC. RPE did not differ between women and men at any measurement point within each set for BC and KE. RPE-AM (final) was greater ( P < 0.01) than RPE-O in the three sets of BC and KE. CONCLUSION Findings provided concurrent validation of the OMNI-RES to measure RPE for the active muscle and overall body in young recreationally trained female and male weight lifters performing upper- and lower-body resistance exercise.


Diabetes | 2010

Depletion of Liver Kupffer Cells Prevents the Development of Diet-Induced Hepatic Steatosis and Insulin Resistance

Wan Huang; Anantha S. Metlakunta; Nikolaos Dedousis; Pili Zhang; Ian Sipula; John J. Dubé; Donald K. Scott; Robert M. O'Doherty

OBJECTIVE Increased activity of the innate immune system has been implicated in the pathogenesis of the dyslipidemia and insulin resistance associated with obesity and type 2 diabetes. In this study, we addressed the potential role of Kupffer cells (liver-specific macrophages, KCs) in these metabolic abnormalities. RESEARCH DESIGN AND METHODS Rats were depleted of KCs by administration of gadolinium chloride, after which all animals were exposed to a 2-week high-fat or high-sucrose diet. Subsequently, the effects of these interventions on the development of hepatic insulin resistance and steatosis were assessed. In further studies, the effects of M1-polarized KCs on hepatocyte lipid metabolism and insulin sensitivity were addressed. RESULTS As expected, a high-fat or high-sucrose diet induced steatosis and hepatic insulin resistance. However, these metabolic abnormalities were prevented when liver was depleted of KCs. In vitro, KCs recapitulated the in vivo effects of diet by increasing hepatocyte triglyceride accumulation and fatty acid esterification, and decreasing fatty acid oxidation and insulin responsiveness. To address the mechanisms(s) of KC action, we inhibited a panel of cytokines using neutralizing antibodies. Only neutralizing antibodies against tumor necrosis factor-α (TNFα) attenuated KC-induced alterations in hepatocyte fatty acid oxidation, triglyceride accumulation, and insulin responsiveness. Importantly, KC TNFα levels were increased by diet in vivo and in isolated M1-polarized KCs in vitro. CONCLUSIONS These data demonstrate a role for liver macrophages in diet-induced alterations in hepatic lipid metabolism and insulin sensitivity, and suggest a role for these cells in the etiology of the metabolic abnormalities of obesity/type 2 diabetes.


Diabetes | 2011

Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance: Another Paradox in Endurance-Trained Athletes?

Francesca Amati; John J. Dubé; Elvis Alvarez-Carnero; Martin M. Edreira; Peter J. Chomentowski; Paul M. Coen; Galen E. Switzer; Perry E. Bickel; Maja Stefanovic-Racic; Frederico G.S. Toledo; Bret H. Goodpaster

OBJECTIVE Chronic exercise and obesity both increase intramyocellular triglycerides (IMTGs) despite having opposing effects on insulin sensitivity. We hypothesized that chronically exercise-trained muscle would be characterized by lower skeletal muscle diacylglycerols (DAGs) and ceramides despite higher IMTGs and would account for its higher insulin sensitivity. We also hypothesized that the expression of key skeletal muscle proteins involved in lipid droplet hydrolysis, DAG formation, and fatty-acid partitioning and oxidation would be associated with the lipotoxic phenotype. RESEARCH DESIGN AND METHODS A total of 14 normal-weight, endurance-trained athletes (NWA group) and 7 normal-weight sedentary (NWS group) and 21 obese sedentary (OBS group) volunteers were studied. Insulin sensitivity was assessed by glucose clamps. IMTGs, DAGs, ceramides, and protein expression were measured in muscle biopsies. RESULTS DAG content in the NWA group was approximately twofold higher than in the OBS group and ~50% higher than in the NWS group, corresponding to higher insulin sensitivity. While certain DAG moieties clearly were associated with better insulin sensitivity, other species were not. Ceramide content was higher in insulin-resistant obese muscle. The expression of OXPAT/perilipin-5, adipose triglyceride lipase, and stearoyl-CoA desaturase protein was higher in the NWA group, corresponding to a higher mitochondrial content, proportion of type 1 myocytes, IMTGs, DAGs, and insulin sensitivity. CONCLUSIONS Total myocellular DAGs were markedly higher in highly trained athletes, corresponding with higher insulin sensitivity, and suggest a more complex role for DAGs in insulin action. Our data also provide additional evidence in humans linking ceramides to insulin resistance. Finally, this study provides novel evidence supporting a role for specific skeletal muscle proteins involved in intramyocellular lipids, mitochondrial oxidative capacity, and insulin resistance.


Diabetes | 2010

Insulin Resistance is Associated with Higher Intramyocellular Triglycerides in Type I but not Type II Myocytes Concomitant with Higher Ceramide Content

Paul M. Coen; John J. Dubé; Francesca Amati; Maja Stefanovic-Racic; Robert E. Ferrell; Frederico G.S. Toledo; Bret H. Goodpaster

OBJECTIVE We tested the primary hypotheses that sphingolipid and diacylglycerol (DAG) content is higher within insulin-resistant muscle and that the association between intramyocellular triglycerides (IMTG) and insulin resistance is muscle fiber type specific. RESEARCH DESIGN AND METHODS A nested case-control analysis was conducted in 22 obese (BMI >30 kg/m2) women who were classified as insulin-resistant (IR; n = 12) or insulin-sensitive (IS; n = 10), determined by hyperinsulinemic-euglycemic clamp (>30% greater in IS compared with IR, P < 0.01). Sphingolipid and DAG content was determined by high-performance liquid chromatography–tandem mass spectrometry. Fiber type–specific IMTG content was histologically determined. Gene expression was determined by quantitative PCR. RESULTS Total (555 ± 53 vs. 293 ± 54 pmol/mg protein, P = 0.004), saturated (361 ± 29 vs. 179 ± 34 pmol/mg protein, P = 0.001), and unsaturated (198 ± 29 vs. 114 ± 21 pmol/mg protein, P = 0.034) ceramides were higher in IR compared with IS. DAG concentrations, however, were similar. IMTG content within type I myocytes, but not type II myocytes, was higher in IR compared with IS subjects (P = 0.005). Insulin sensitivity was negatively correlated with IMTG within type I myocytes (R = −0.51, P = 0.026), but not with IMTG within type II myocytes. The proportion of type I myocytes was lower (41 vs. 59%, P < 0.01) in IR subjects. Several genes involved in lipid droplet and fatty acid metabolism were differentially expressed in IR compared with IS subjects. CONCLUSIONS Human skeletal muscle insulin resistance is related to greater IMTG content in type I but not type II myocytes, to greater ceramide content, and to alterations in gene expression associated with lipid metabolism.


Diabetes Care | 2009

Physical Inactivity and Obesity Underlie the Insulin Resistance of Aging

Francesca Amati; John J. Dubé; Paul M. Coen; Maja Stefanovic-Racic; Frederico G.S. Toledo; Bret H. Goodpaster

OBJECTIVE Age-associated insulin resistance may underlie the higher prevalence of type 2 diabetes in older adults. We examined a corollary hypothesis that obesity and level of chronic physical inactivity are the true causes for this ostensible effect of aging on insulin resistance. RESEARCH DESIGN AND METHODS We compared insulin sensitivity in 7 younger endurance-trained athletes, 12 older athletes, 11 younger normal-weight subjects, 10 older normal-weight subjects, 15 younger obese subjects, and 15 older obese subjects using a glucose clamp. The nonathletes were sedentary. RESULTS Insulin sensitivity was not different in younger endurance-trained athletes versus older athletes, in younger normal-weight subjects versus older normal-weight subjects, or in younger obese subjects versus older obese subjects. Regardless of age, athletes were more insulin sensitive than normal-weight sedentary subjects, who in turn were more insulin sensitive than obese subjects. CONCLUSIONS Insulin resistance may not be characteristic of aging but rather associated with obesity and physical inactivity.


Medicine and Science in Sports and Exercise | 2004

Validation of the adult OMNI Scale of Perceived Exertion for Cycle Ergometer exercise

Robert J. Robertson; Fredric L. Goss; John J. Dubé; Jason Rutkowski; Mandi N. Dupain; Carol Brennan; Joseph L. Andreacci

PURPOSE Concurrent and construct validity of the OMNI-Cycle Scale of Perceived Exertion were examined using young adult women and men (18-32 yr). METHODS Concurrent validity was established by correlating OMNI-Cycle Scale ratings of perceived exertion (RPE) with oxygen consumption (.VO2) and heart rate (HR) responses to a load-incremented cycle ergometer protocol. Construct validity was established by correlating RPE derived from the OMNI-Cycle Scale with RPE from the Borg (6-20) Scale. RPE, .VO2, and HR were measured during each exercise stage. RESULTS The range of exercise responses across the incremental test for the female and male groups was .VO2 = 0.92-2.74 L.min-1, HR = 107.2-167.2 beats.min-1, and OMNI Scale RPE-Overall, RPE-Legs, and RPE-Chest 1.0-9.1. Correlation/regression analyses indicated that RPE-Overall, RPE-Legs, and RPE-Chest distributed as a positive linear function of both .VO2 and HR (r = 0.81 to 0.95; P < 0.01). Undifferentiated and differentiated RPE-OMNI Scale distributed as a positive linear function of RPE-Borg Scale (r = 0.92 to 0.97; P < 0.01). ANOVA indicated that OMNI-Cycle RPE-Legs was higher (P < 0.01) than RPE-Chest at each exercise stage for both genders. CONCLUSION Concurrent and construct evidence supports use of the OMNI Scale by adult women and men to estimate RPE during cycle exercise.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2009

Moderate Exercise Attenuates the Loss of Skeletal Muscle Mass That Occurs With Intentional Caloric Restriction–Induced Weight Loss in Older, Overweight to Obese Adults

Peter J. Chomentowski; John J. Dubé; Francesca Amati; Maja Stefanovic-Racic; Shanjian Zhu; Frederico G.S. Toledo; Bret H. Goodpaster

BACKGROUND Aging is associated with a loss of muscle mass and increased body fat. The effects of diet-induced weight loss on muscle mass in older adults are not clear. PURPOSE This study examined the effects of diet-induced weight loss, alone and in combination with moderate aerobic exercise, on skeletal muscle mass in older adults. METHODS Twenty-nine overweight to obese (body mass index = 31.8 +/- 3.3 kg/m(2)) older (67.2 +/- 4.2 years) men (n = 13) and women (n = 16) completed a 4-month intervention consisting of diet-induced weight loss alone (WL; n = 11) or with exercise (WL/EX; n = 18). The WL intervention consisted of a low-fat, 500-1,000 kcal/d caloric restriction. The WL/EX intervention included the WL intervention with the addition of aerobic exercise, moderate-intensity walking, three to five times per week for 35-45 minutes per session. Whole-body dual-energy x-ray absorptiometry, thigh computed tomography (CT), and percutaneous muscle biopsy were performed to assess changes in skeletal muscle mass at the whole-body, regional, and cellular level, respectively. RESULTS Mixed analysis of variance demonstrated that both groups had similar decreases in bodyweight (WL, -9.2% +/- 1.0%; WL/EX, -9.1% +/- 1.0%) and whole-body fat mass (WL, -16.5%, WL/EX, -20.7%). However, whole-body fat-free mass decreased significantly (p < .05) in WL (-4.3% +/- 1.2%) but not in WL/EX (-1.1% +/- 1.0%). Thigh muscle cross-sectional area by CT decreased in both groups (WL, -5.2% +/- 1.1%; WL/EX, -3.0% +/- 1.0%) and was not statistically different between groups. Type I muscle fiber area decreased in WL (-19.2% +/- 7.9%, p = .01) but remained unchanged in WL/EX (3.4% +/- 7.5%). Similar patterns were observed in type II fibers (WL, -16.6% +/- 4.0%; WL/EX, -0.2% +/- 6.5%). CONCLUSION Diet-induced weight loss significantly decreased muscle mass in older adults. However, the addition of moderate aerobic exercise to intentional weight loss attenuated the loss of muscle mass.


Circulation | 2016

SIRT3–AMP-Activated Protein Kinase Activation by Nitrite and Metformin Improves Hyperglycemia and Normalizes Pulmonary Hypertension Associated With Heart Failure With Preserved Ejection Fraction

Yen-Chun Lai; Diana M. Tabima; John J. Dubé; Kara S. Hughan; Rebecca R. Vanderpool; Dmitry A. Goncharov; Claudette M. St. Croix; Adolfo Garcia-Ocaña; Elena A. Goncharova; Stevan P. Tofovic; Ana L. Mora; Mark T. Gladwin

Background— Pulmonary hypertension associated with heart failure with preserved ejection fraction (PH-HFpEF) is an increasingly recognized clinical complication of metabolic syndrome. No adequate animal model of PH-HFpEF is available, and no effective therapies have been identified to date. A recent study suggested that dietary nitrate improves insulin resistance in endothelial nitric oxide synthase null mice, and multiple studies have reported that both nitrate and its active metabolite, nitrite, have therapeutic activity in preclinical models of pulmonary hypertension. Methods and Results— To evaluate the efficacy and mechanism of nitrite in metabolic syndrome associated with PH-HFpEF, we developed a 2-hit PH-HFpEF model in rats with multiple features of metabolic syndrome attributable to double-leptin receptor defect (obese ZSF1) with the combined treatment of vascular endothelial growth factor receptor blocker SU5416. Chronic oral nitrite treatment improved hyperglycemia in obese ZSF1 rats by a process that requires skeletal muscle SIRT3-AMPK-GLUT4 signaling. The glucose-lowering effect of nitrite was abolished in SIRT3-deficient human skeletal muscle cells, and in SIRT3 knockout mice fed a high-fat diet, as well. Skeletal muscle biopsies from humans with metabolic syndrome after 12 weeks of oral sodium nitrite and nitrate treatment (IND#115926) displayed increased activation of SIRT3 and AMP-activated protein kinase. Finally, early treatments with nitrite and metformin at the time of SU5416 injection reduced pulmonary pressures and vascular remodeling in the PH-HFpEF model with robust activation of skeletal muscle SIRT3 and AMP-activated protein kinase. Conclusions— These studies validate a rodent model of metabolic syndrome and PH-HFpEF, suggesting a potential role of nitrite and metformin as a preventative treatment for this disease.


American Journal of Physiology-endocrinology and Metabolism | 2009

Whole body overexpression of PGC-1α has opposite effects on hepatic and muscle insulin sensitivity

Huiyun Liang; Bogdan Balas; Puntip Tantiwong; John J. Dubé; Bret H. Goodpaster; Robert M. O'Doherty; Ralph A. DeFronzo; Arlan Richardson; Nicolas Musi; Walter F. Ward

Type 2 diabetes is characterized by fasting hyperglycemia, secondary to hepatic insulin resistance and increased glucose production. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) is a transcriptional coactivator that is thought to control adaptive responses to physiological stimuli. In liver, PGC-1alpha expression is induced by fasting, and this effect promotes gluconeogenesis. To examine whether PGC-1alpha is involved in the pathogenesis of hepatic insulin resistance, we generated transgenic (TG) mice with whole body overexpression of human PGC-1alpha and evaluated glucose homeostasis with a euglycemic-hyperinsulinemic clamp. PGC-1alpha was moderately (approximately 2-fold) overexpressed in liver, skeletal muscle, brain, and heart of TG mice. In liver, PGC-1alpha overexpression resulted in increased expression of hepatocyte nuclear factor-4alpha and the gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. PGC-1alpha overexpression caused hepatic insulin resistance, manifested by higher glucose production and diminished insulin suppression of gluconeogenesis. Paradoxically, PGC-1alpha overexpression improved muscle insulin sensitivity, as evidenced by elevated insulin-stimulated Akt phosphorylation and peripheral glucose disposal. Content of myoglobin and troponin I slow protein was increased in muscle of TG mice, indicating fiber-type switching. PGC-1alpha overexpression also led to lower reactive oxygen species production by mitochondria and reduced IKK/IkappaB signaling in muscle. Feeding a high-fat diet to TG mice eliminated the increased muscle insulin sensitivity. The dichotomous effect of PGC-1alpha overexpression in liver and muscle suggests that PGC-1alpha is a fuel gauge that couples energy demands (muscle) with the corresponding fuel supply (liver). Thus, under conditions of physiological stress (i.e., prolonged fast and exercise training), increased hepatic glucose production may help sustain glucose utilization in peripheral tissues.


Journal of Applied Physiology | 2008

Separate and combined effects of exercise training and weight loss on exercise efficiency and substrate oxidation

Francesca Amati; John J. Dubé; Chris Shay; Bret H. Goodpaster

Perturbations in body weight have been shown to affect energy expenditure and efficiency during physical activity. The separate effects of weight loss and exercise training on exercise efficiency or the proportion of energy derived from fat oxidation during physical activity, however, are not known. The purpose of this study was to determine the separate and combined effects of exercise training and weight loss on metabolic efficiency, economy (EC), and fat oxidation during steady-state moderate submaximal exercise. Sixty-four sedentary older (67 +/- 0.5 yr) overweight to obese (30.7 +/- 0.4 kg/m(2)) volunteers completed 4 mo of either diet-induced weight loss (WL; n = 11), exercise training (EX; n = 36), or the combination of both interventions (WLEX; n = 17). Energy expenditure, gross efficiency (GE), EC, and proportion of energy expended from fat (EF) were determined during a 1-h submaximal (50% of peak aerobic capacity) cycle ergometry exercise before the intervention and at the same absolute work rate after the intervention. We found that EX increased GE by 4.7 +/- 2.2%. EC was similarly increased by 4.2 +/- 2.1% by EX. The addition of concomitant WL to EX (WLEX) resulted in greater increases in GE (9.0 +/- 3.3%) compared with WL alone but not compared with EX alone. These effects remained after adjusting for changes in lean body mass. The proportion of energy derived from fat during the bout of moderate exercise increased with EX and WLEX but not with WL. From these findings, we conclude that exercise training, either alone or in combination with weight loss, increases both exercise efficiency and the utilization of fat during moderate physical activity in previously sedentary, obese older adults. Weight loss alone, however, significantly improves neither efficiency nor utilization of fat during exercise.

Collaboration


Dive into the John J. Dubé's collaboration.

Top Co-Authors

Avatar

Bret H. Goodpaster

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul M. Coen

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar

Joseph L. Andreacci

Bloomsburg University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Curt B. Dixon

Lock Haven University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge