John J. Dvorak
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John J. Dvorak.
Reviews of Geophysics | 1997
John J. Dvorak; Daniel Dzurisin
Routine geodetic measurements are made at only a few dozen of the worlds 600 or so active volcanoes, even though these measurements have proven to be a reliable precursor of eruptions. The pattern and rate of surface displacement reveal the depth and rate of pressure increase within shallow magma reservoirs. This process has been demonstrated clearly at Kilauea and Mauna Loa, Hawaii; Long Valley caldera, California; Campi Flegrei caldera, Italy; Rabaul caldera, Papua New Guinea; and Aira caldera and nearby Sakurajima, Japan. Slower and lesser amounts of surface displacement at Yellowstone caldera, Wyoming, are attributed to changes in a hydrothermal system that overlies a crustal magma body. The vertical and horizontal dimensions of eruptive fissures, as well as the amount of widening, have been determined at Kilauea, Hawaii; Etna, Italy; Tolbachik, Kamchatka; Krafla, Iceland; and Asal-Ghoubbet, Djibouti, the last a segment of the East Africa Rift Zone. Continuously recording instruments, such as tiltmeters, extensometers, and dilatometers, have recorded horizontal and upward growth of eruptive fissures, which grew at rates of hundreds of meters per hour, at Kilauea; Izu-Oshima, Japan; Teishi Knoll seamount, Japan; and Piton de la Fournaise, Reunion Island. In addition, such instruments have recorded the hour or less of slight ground movement that preceded small explosive eruptions at Sakurajima and presumed sudden gas emissions at Galeras, Colombia. The use of satellite geodesy, in particular the Global Positioning System, offers the possibility of revealing changes in surface strain both local to a volcano and over a broad region that includes the volcano.
Journal of Geophysical Research | 1993
John J. Dvorak; Daniel Dzurisin
When an eruption of Kilauea lasts more than 4 months, so that a well-defined conduit has time to develop, magma moves freely through the volcano from a deep source to the eruptive site at a constant rate of 0.09 km3/yr. At other times, the magma supply rate to Kilauea, estimated from geodetic measurements of surface displacements, may be different. For example, after a large withdrawal of magma from the summit reservoir, such as during a rift zone eruption, the magma supply rate is high initially but then lessens and exponentially decays as the reservoir refills. Different episodes of refilling may have different average rates of magma supply. During four year-long episodes in the 1960s, the annual rate of refilling varied from 0.02 to 0.18 km3/yr, bracketing the sustained eruptive rate of 0.09 km3/yr. For decade-long or longer periods, our estimate of magma supply rate is based on long-term changes in eruptive rate. We use eruptive rate because after a few dozen eruptions the volume of magma that passes through the summit reservoir is much larger than the net change of volume of magma stored within Kilauea. The low eruptive rate of 0.009 km3/yr between 1840 and 1950, compared to an average eruptive rate of 0.05 km3/yr since 1950, suggests that the magma supply rate was lower between 1840 and 1950 than it has been since 1950. An obvious difference in activity before and since 1950 was the frequency of rift zone eruptions: eight rift zone eruptions occurred between 1840 and 1950, but more than 20 rift zone eruptions have occurred since 1950. The frequency of rift zone eruptions influences magma supply rate by suddenly lowering pressure of the summit magma reservoir, which feeds magma to rift zone eruptions. A temporary drop of reservoir pressure means a larger-than-normal pressure difference between the reservoir and a deeper source, so magma is forced to move upward into Kilauea at a faster rate.
Journal of Geophysical Research | 1991
John J. Dvorak; Giovanna Berrino
This disclosure relates to foldable cartons wherein adjacent walls thereof are joined together by a folded web. In order that the carton may be retained in an erected condition, there has been provided a web lock which will lock the adjacent corners together in a rigid corner forming relation. The web lock includes a notch or opening in one of the walls adjacent the corner and a projection on the other of the walls extending into the notch and locking the walls against folding relative to one another.
Tectonophysics | 1986
John J. Dvorak; Arnold T. Okamura; Thomas T. English; Robert Y. Koyanagi; Jennifer S. Nakata; Maurice K. Sako; Wilfred T. Tanigawa; Kenneth M. Yamashita
Abstract Increased earthquake activity and compression of the south flank of Kilauea volcano, Hawaii, have been recognized by previous investigators to accompany rift intrusions. We further detail the temporal and spatial changes in earthquake rates and ground strain along the south flank induced by six major rift intrusions which occurred between December 1971 and January 1981. The seismic response of the south flank to individual rift intrusions is immediate; the increased rate of earthquake activity lasts from 1 to 4 weeks. Horizontal strain measurements indicate that compression of the south flank usually accompanies rift intrusions and eruptions. Emplacement of an intrusion at a depth greater than about 4 km, such as the June 1982 southwest rift intrusion, however, results in a slight extension of the subaerial portion of the south flank. Horizontal strain measurements along the south flank are used to locate the January 1983 east-rift intrusion, which resulted in eruptive activity. The intrusion is modeled as a vertical rectangular sheet with constant displacement perpendicular to the plane of the sheet. This model suggests that the intrusive body that compressed the south flank in January 1983 extended from the surface to about 2.4 km depth, and was aligned along a strike of N66°E. The intrusion is approximately 11 km in length, extended beyond the January 1983 eruptive fissures, which are 8 km in length and is contained within the 14-km-long region of shallow rift earthquakes.
Journal of Volcanology and Geothermal Research | 1991
John J. Dvorak; P. Gasparini
Abstract The record of felt earthquakes around Naples Bay in southern Italy is probably complete since the mid-15th century. According to this record, intense earthquake swarms originating beneath Campi Flegrei, an explosive caldera located along the north coast of Naples Bay, have occurred only twice: (1) before the only historical eruption in Campi Flegrei in 1538; and (2) from mid-1983 to December 1984. Earthquake activity during the earlier period, which began at least a few years, and possibly as many as 30 years, before the 1538 eruption, damaged many buildings in the city of Pozzuoli, located near the center of Campi Flegrei. Minor seismic activity, which consisted of only a few felt earthquakes, occurred from 1970 to 1971. The second period of intense earthquake swarms lasted from mid-1983 to 1984, again damaging many buildings in Pozzuoli. Two periods of uplift along the shoreline within Campi Flegrei have also been noted since the mid-15th century: (1) during the few decades before the 1538 eruption; and (2) as two distinct episodes since 1968. Uplift of a few meters probably occurred a few decades before the 1538 eruption; uplift of as much as 3.0 m has occurred in Pozzuoli since 1968. These similarities strongly suggest that, for the first time in 440 years, the same process that caused intense local earthquake swarms and uplift in the early 1500s and led to an eruption in 1538, has again occurred beneath Campi Flegrei. Though no major seismicity or uplift has occurred since December 1984, because of the large amount of extensional strain accumulated during the past two decades, if a third episode of seismicity and rapid uplift occurs, it may lead to an eruption within several months after the resumption of activity.
Bulletin of Volcanology | 1992
John J. Dvorak
A small explosive eruption of Kilauea Volcano, Hawaii, occurred in May 1924. The eruption was preceded by rapid draining of a lava lake and transfer of a large volume of magma from the summit reservoir to the east rift zone. This lowered the magma column, which reduced hydrostatic pressure beneath Halemaumau and allowed groundwater to flow rapidly into areas of hot rock, producing a phreatic eruption. A comparison with other events at Kilauea shows that the transfer of a large volume of magma out of the summit reservoir is not sufficient to produce a phreatic eruption. For example, the volume transferred at the beginning of explosive activity in May 1924 was less than the volumes transferred in March 1955 and January–February 1960, when no explosive activity occurred. Likewise, draining of a lava lake and deepening of the floor of Halemaumau, which occurred in May 1922 and August 1923, were not sufficient to produce explosive activity. A phreatic eruption of Kilauea requires both the transfer of a large volume of magma from the summit reservoir and the rapid removal of magma from near the surface, where the surrounding rocks have been heated to a sufficient temperature to produce steam explosions when suddenly contacted by groundwater.
Journal of Volcanology and Geothermal Research | 1985
John J. Dvorak; Arnold T. Okamura
Abstract During January–August 1983, a network of telemetered tiltmeters and seismometers recorded detailed temporal changes associated with seven major eruptive phases along the east rift of Kilauea Volcano, Hawaii. Each eruptive phase was accompanied by subsidence of the summit region and followed by reinflation of the summit to approximately the same level before renewal of eruptive activity. The cyclic summit tilt pattern and the absence of measurable tilt changes near the eruptive site suggest that conditions in the summit region controlled the timing of the last six eruptive phases. The rate of summit subsidence progressively increased from one eruptive phase to the next during the last six phases; the amplitude of harmonic tremor increased during the last four phases. The increases in subsidence rate and in tremor amplitude suggest that frequent periods of magma movement have reduced the flow resistance of the conduit system between the summit and the rift zone.
Journal of Geophysical Research | 1994
John J. Dvorak
The intrusion of magma that led to the beginning of the January 3, 1983, eruption along the middle east rift zone of Kilauea Volcano, Hawaii, resulted in widening of the rift zone and compression of the adjacent portion of the south flank of the volcanic edifice. An earlier rift zone event, and subsequent eruption, on September 12, 1977, probably had a similar effect on the south flank. The compression built up since 1977 was relieved by a M = 6.1 earthquake on June 26, 1989. Horizontal displacements associated with the earthquake, determined by using the Global Positioning System (GPS), indicated seaward movement of the south flank of as much as 300 mm. Vertical displacements, measured by a conventional leveling technique and by GPS, indicated subsidence of as much as 250 mm near the east edge of the aftershock zone. These ground displacements can be modeled by horizontal slip of 1.2 m at an average depth of 6 km. The geodetic moment was 1×1026 dyn cm, a factor of 2 greater than the seismic moment, indicating a significant amount of ground movement was aseismic. The geodetic moment associated with the 1977 and 1983 rift zone events was about 0.8×1026 dyn cm, nearly equal to the geodetic moment of the 1989 south flank earthquake. The 6-km depth of average slip during the earthquake was well above the 9-km depth of the base of the volcano, which indicates the average depth where strain was released by the 1989 earthquake was well within the volcanic edifice. The strain released by the earthquake, and the initial compression caused by rift zone intrusions, occurred over a range of depths, indicating the south flank behaves more as a large elastic spring coupled to a sliding mass rather than a rigid block sliding along the base of the volcano.
Bulletin of the Seismological Society of America | 1994
John J. Dvorak; Fred W. Klein; Donald A. Swanson
An M = 7.2 earthquake on 29 November 1975 caused the south flank of Kilauea Volcano, Hawaii, to move seaward several meters: a catastrophic release of compression of the south flank caused by earlier injections of magma into the adjacent segment of a rift zone. The focal mechanisms of the mainshock, the largest foreshock, and the largest aftershock suggest seaward movement of the upper block. The rate of aftershocks decreased in a familiar hyperbolic decay, reaching the pre-1975 rate of seismicity by the mid-1980s. Repeated rift-zone intrusions and eruptions after 1975, which occurred within 25 km of the summit area, compressed the adjacent portion of the south flank, apparently masking continued seaward displacement of the south flank. This is evident along a trilateration line that continued to extend, suggesting seaward displacement, immediately after the M = 7.2 earthquake, but then was compressed during a series of intrusions and eruptions that began in September 1977. Farther to the east, trilateration measurements show that the portion of the south flank above the aftershock zone, but beyond the area of compression caused by the rift-zone intrusions and eruptions, continued to move seaward at a decreasing rate until the mid-1980s, mimicking the decay in aftershock rate. Along the same portion of the south flank, the pattern of vertical surface displacements can be explained by continued seaward movement of the south flank and development of two eruptive fissures along the east rift zone, each of which extended from a depth of ∼3 km to the surface. The aftershock rate and continued seaward movement of the south flank are reminiscent of crustal response to other large earthquakes, such as the 1966 M = 6 Parkfield earthquake and the 1983 M = 6.5 Coalinga earthquake.
Bulletin of Volcanology | 1990
John J. Dvorak; Johannes Matahelumual; Arnold T. Okamura; Harun Said; Thomas J. Casadevall; Dedi Mulyadi
Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40–50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very shallow magma body or heating and expansion of a confined aquifier.