Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert F. Standaert is active.

Publication


Featured researches published by Robert F. Standaert.


Science | 1995

Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin

G. Fenteany; Robert F. Standaert; William S. Lane; Soongyu Choi; E. J. Corey; Stuart L. Schreiber

Lactacystin is a Streptomyces metabolite that inhibits cell cycle progression and induces neurite outgrowth in a murine neuroblastoma cell line. Tritium-labeled lactacystin was used to identify the 20S proteasome as its specific cellular target. Three distinct peptidase activities of this enzyme complex (trypsin-like, chymotrypsin-like, and peptidylglutamyl-peptide hydrolyzing activities) were inhibited by lactacystin, the first two irreversibly and all at different rates. None of five other proteases were inhibited, and the ability of lactacystin analogs to inhibit cell cycle progression and induce neurite outgrowth correlated with their ability to inhibit the proteasome. Lactacystin appears to modify covalently the highly conserved amino-terminal threonine of the mammalian proteasome subunit X (also called MB1), a close homolog of the LMP7 proteasome subunit encoded by the major histocompatibility complex. This threonine residue may therefore have a catalytic role, and subunit X/MB1 may be a core component of an amino-terminal-threonine protease activity of the proteasome.


Science | 1991

Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex.

G. Van Duyne; Robert F. Standaert; Pa Karplus; Sl Schreiber; Jon Clardy

The structure of the human FK506 binding protein (FKBP), complexed with the immunosuppressant FK506, has been determined to 1.7 angstroms resolution by x-ray crystallography. The conformation of the protein changes little upon complexation, but the conformation of FK506 is markedly different in the bound and unbound forms. The drugs association with the protein involves five hydrogen bonds, a hydrophobic binding pocket lined with conserved aromatic residues, and an unusual carbonyl binding pocket. The nature of this complex has implications for the mechanism of rotamase catalysis and for the biological actions of FK506 and rapamycin.


Journal of the American Chemical Society | 2013

Bilayer thickness mismatch controls domain size in model membranes.

Frederick A. Heberle; Robin S. Petruzielo; Jianjun Pan; Paul Drazba; Norbert Kučerka; Robert F. Standaert; Gerald W. Feigenson; John Katsaras

The observation of lateral phase separation in lipid bilayers has received considerable attention, especially in connection to lipid raft phenomena in cells. It is widely accepted that rafts play a central role in cellular processes, notably signal transduction. While micrometer-sized domains are observed with some model membrane mixtures, rafts much smaller than 100 nm-beyond the reach of optical microscopy-are now thought to exist, both in vitro and in vivo. We have used small-angle neutron scattering, a probe free technique, to measure the size of nanoscopic membrane domains in unilamellar vesicles with unprecedented accuracy. These experiments were performed using a four-component model system containing fixed proportions of cholesterol and the saturated phospholipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), mixed with varying amounts of the unsaturated phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). We find that liquid domain size increases with the extent of acyl chain unsaturation (DOPC:POPC ratio). Furthermore, we find a direct correlation between domain size and the mismatch in bilayer thickness of the coexisting liquid-ordered and liquid-disordered phases, suggesting a dominant role for line tension in controlling domain size. While this result is expected from line tension theories, we provide the first experimental verification in free-floating bilayers. Importantly, we also find that changes in bilayer thickness, which accompany changes in the degree of lipid chain unsaturation, are entirely confined to the disordered phase. Together, these results suggest how the size of functional domains in homeothermic cells may be regulated through changes in lipid composition.


Biotechnology for Biofuels | 2012

Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog

Timothy J. Tschaplinski; Robert F. Standaert; Nancy L. Engle; Madhavi Z. Martin; Amandeep K. Sangha; Jerry M. Parks; Jeremy C. Smith; Reichel Samuel; Nan Jiang; Yunqiao Pu; Arthur J. Ragauskas; Choo Yieng Hamilton; Chunxiang Fu; Zeng-Yu Wang; Brian H. Davison; Richard A. Dixon; Jonathan R. Mielenz

BackgroundDown-regulation of the caffeic acid 3-O-methyltransferase EC 2.1.1.68 (COMT) gene in the lignin biosynthetic pathway of switchgrass (Panicum virgatum) resulted in cell walls of transgenic plants releasing more constituent sugars after pretreatment by dilute acid and treatment with glycosyl hydrolases from an added enzyme preparation and from Clostridium thermocellum. Fermentation of both wild-type and transgenic switchgrass after milder hot water pretreatment with no water washing showed that only the transgenic switchgrass inhibited C. thermocellum. Gas chromatography–mass spectrometry (GCMS)-based metabolomics were undertaken on cell wall aqueous extracts to determine the nature of the microbial inhibitors.ResultsGCMS confirmed the increased concentration of a number of phenolic acids and aldehydes that are known inhibitors of microbial fermentation. Metabolomic analyses of the transgenic biomass additionally revealed the presence of a novel monolignol-like metabolite, identified as trans-3, 4-dimethoxy-5-hydroxycinnamyl alcohol (iso-sinapyl alcohol) in both non-pretreated, as well as hot water pretreated samples. iso-Sinapyl alcohol and its glucoside were subsequently generated by organic synthesis and the identity of natural and synthetic materials were confirmed by mass spectrometric and NMR analyses. The additional novel presence of iso-sinapic acid, iso-sinapyl aldehyde, and iso-syringin suggest the increased activity of a para-methyltransferase, concomitant with the reduced COMT activity, a strict meta-methyltransferase. Quantum chemical calculations were used to predict the most likely homodimeric lignans generated from dehydration reactions, but these products were not evident in plant samples.ConclusionsDown-regulation of COMT activity in switchgrass resulted in the accumulation of previously undetected metabolites resembling sinapyl alcohol and its related metabolites, but that are derived from para-methylation of 5-hydroxyconiferyl alcohol, and related precursors and products; the accumulation of which suggests altered metabolism of 5-hydroxyconiferyl alcohol in switchgrass. Given that there was no indication that iso-sinapyl alcohol was integrated in cell walls, it is considered a monolignol analog. Diversion of substrates from sinapyl alcohol to free iso-sinapyl alcohol, its glucoside, and associated upstream lignin pathway changes, including increased phenolic aldehydes and acids, are together associated with more facile cell wall deconstruction, and to the observed inhibitory effect on microbial growth. However, iso-sinapyl alcohol and iso-sinapic acid, added separately to media, were not inhibitory to C. thermocellum cultures.


Journal of Physical Chemistry B | 2012

Radical Coupling Reactions in Lignin Synthesis: A Density Functional Theory Study

Amandeep K. Sangha; Jerry M. Parks; Robert F. Standaert; Angela Ziebell; Mark E. Davis; Jeremy C. Smith

Lignin is a complex, heterogeneous polymer in plant cell walls that provides mechanical strength to the plant stem and confers resistance to degrading microbes, enzymes, and chemicals. Lignin synthesis initiates through oxidative radical-radical coupling of monolignols, the most common of which are p-coumaryl, coniferyl, and sinapyl alcohols. Here, we use density functional theory to characterize radical-radical coupling reactions involved in monolignol dimerization. We compute reaction enthalpies for the initial self- and cross-coupling reactions of these monolignol radicals to form dimeric intermediates via six major linkages observed in natural lignin. The 8-O-4, 8-8, and 8-5 coupling are computed to be the most favorable, whereas the 5-O-4, 5-5, and 8-1 linkages are less favorable. Overall, p-coumaryl self- and cross-coupling reactions are calculated to be the most favorable. For cross-coupling reactions, in which each radical can couple via either of the two sites involved in dimer formation, the more reactive of the two radicals is found to undergo coupling at its site with the highest spin density.


Bioconjugate Chemistry | 2011

LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides.

Jonathan Woodward; Stephen J. Kennel; Dustin Osborne; Jonathan S. Wall; Adam J. Rondinone; Robert F. Standaert; Saed Mirzadeh

Nanoscale materials have been envisioned as carriers for various therapeutic drugs, including radioisotopes. Inorganic nanoparticles (NPs) are particularly appealing vehicles for targeted radiotherapy because they can package several radioactive atoms into a single carrier and can potentially retain daughter radioisotopes produced by in vivo generators such as actinium-225 ((225)Ac, t(1/2) = 10 d). Decay of this radioisotope to stable bismuth-209 proceeds through a chain of short-lived daughters accompanied by the emission of four α-particles that release >27 MeV of energy. The challenge in realizing the enhanced cytotoxic potential of in vivo generators lies in retaining the daughter nuclei at the therapy site. When (225)Ac is attached to targeting agents via standard chelate conjugation methods, all of the daughter radionuclides are released after the initial α-decay occurs. In this work, (225)Ac was incorporated into lanthanum phosphate NPs to determine whether the radioisotope and its daughters would be retained within the dense mineral lattice. Further, the (225)Ac-doped NPs were conjugated to the monoclonal antibody mAb 201B, which targets mouse lung endothelium through the vasculature, to ascertain the targeting efficacy and in vivo retention of radioisotopes. Standard biodistribution techniques and microSPECT/CT imaging of (225)Ac as well as the daughter radioisotopes showed that the NPs accumulated rapidly in mouse lung after intravenous injection. By showing that excess, competing, uncoupled antibodies or NPs coupled to control mAbs are deposited primarily in the liver and spleen, specific targeting of NP-mAb 201B conjugates was demonstrated. Biodistribution analysis showed that ∼30% of the total injected dose of La((225)Ac)PO(4) NPs accumulated in mouse lungs 1 h postinjection, yielding a value of % ID/g >200. Furthermore, after 24 h, 80% of the (213)Bi daughter produced from (225)Ac decay was retained within the target organ and (213)Bi retention increased to ∼87% at 120 h. In vitro analyses, conducted over a 1 month interval, demonstrated that ∼50% of the daughters were retained within the La((225)Ac)PO(4) NPs at any point over that time frame. Although most of the γ-rays from radionuclides in the (225)Ac decay chain are too energetic to be captured efficiently by SPECT detectors, appropriate energy windows were found that provided dramatic microSPECT images of the NP distribution in vivo. We conclude that La((225)Ac)PO(4)-mAb 201B conjugates can be targeted efficiently to mouse lung while partially retaining daughter products and that targeting can be monitored by biodistribution techniques and microSPECT imaging.


Tetrahedron | 1992

Molecular recognition of immunophilins and immunophilin-ligand complexes

Stuart L. Schreiber; Jun Lui; Mark W. Albers; Michael Rosen; Robert F. Standaert; Thomas J. Wandless; Patricia K. Somers

Abstract Immunophilin-ligand complexes have been used to identify a previously unknown step in Ca2+-dependent signal transduction pathways. This Report, which we dedicate to Professor Harry H. Wasserman, describes structural and mechanistic aspects of immunophilin research.


Biophysical Journal | 2013

Hybrid and Nonhybrid Lipids Exert Common Effects on Membrane Raft Size and Morphology

Frederick A. Heberle; Milka Doktorova; Shih Lin Goh; Robert F. Standaert; John Katsaras; Gerald W. Feigenson

Nanometer-scale domains in cholesterol-rich model membranes emulate lipid rafts in cell plasma membranes (PMs). The physicochemical mechanisms that maintain a finite, small domain size are, however, not well understood. A special role has been postulated for chain-asymmetric or hybrid lipids having a saturated sn-1 chain and an unsaturated sn-2 chain. Hybrid lipids generate nanodomains in some model membranes and are also abundant in the PM. It was proposed that they align in a preferred orientation at the boundary of ordered and disordered phases, lowering the interfacial energy and thus reducing domain size. We used small-angle neutron scattering and fluorescence techniques to detect nanoscopic and modulated liquid phase domains in a mixture composed entirely of nonhybrid lipids and cholesterol. Our results are indistinguishable from those obtained previously for mixtures containing hybrid lipids, conclusively showing that hybrid lipids are not required for the formation of nanoscopic liquid domains and strongly implying a common mechanism for the overall control of raft size and morphology. We discuss implications of these findings for theoretical descriptions of nanodomains.


European Biophysics Journal | 2012

Model-based Approaches for the Determination of Lipid Bilayer Structure from Small-Angle Neutron and X-ray Scattering Data

Frederick A. Heberle; Jianjun Pan; Robert F. Standaert; Paul Drazba; Norbert Kučerka; John Katsaras

Some of our recent work has resulted in the detailed structures of fully hydrated, fluid phase phosphatidylcholine (PC) and phosphatidylglycerol (PG) bilayers. These structures were obtained from the joint refinement of small-angle neutron and X-ray data using the scattering density profile (SDP) models developed by Kučerka et al. (Biophys J 95:2356–2367, 2008; J Phys Chem B 116:232–239, 2012). In this review, we first discuss models for the standalone analysis of neutron or X-ray scattering data from bilayers, and assess the strengths and weaknesses inherent to these models. In particular, it is recognized that standalone data do not contain enough information to fully resolve the structure of naturally disordered fluid bilayers, and therefore may not provide a robust determination of bilayer structure parameters, including the much-sought-after area per lipid. We then discuss the development of matter density-based models (including the SDP model) that allow for the joint refinement of different contrast neutron and X-ray data, as well as the implementation of local volume conservation within the unit cell (i.e., ideal packing). Such models provide natural definitions of bilayer thicknesses (most importantly the hydrophobic and Luzzati thicknesses) in terms of Gibbs dividing surfaces, and thus allow for the robust determination of lipid areas through equivalent slab relationships between bilayer thickness and lipid volume. In the final section of this review, we discuss some of the significant findings/features pertaining to structures of PC and PG bilayers as determined from SDP model analyses.


Chemistry & Biology | 2000

Chemically induced dimerization of dihydrofolate reductase by a homobifunctional dimer of methotrexate

Stephan J. Kopytek; Robert F. Standaert; John Cd Dyer; James C. Hu

BACKGROUND Chemically induced dimerization (CID) can be used to manipulate cellular regulatory pathways from signal transduction to transcription, and to create model systems for study of the specific interactions between proteins and small-molecule chemical ligands. However, few CID systems are currently available. The properties of, and interactions between, Escherichia coli dihydrofolate reductase (DHFR) and the ligand methotrexate (MTX) meet many of the desired criteria for the development of a new CID system. RESULTS BisMTX, a homobifunctional version of MTX, was synthesized and tested for its ability to induce dimerization of DHFR. Gel-filtration analysis of purified DHFR confirmed that, in vitro, the protein was a monomer in the absence of dimerizer drug; in the presence of bisMTX, a complex of twice the monomeric molecular weight was observed. Furthermore, the off-rate was found to be 0.0002 s(-1), approximately 100 times slower than that reported for DHFR-MTX. Interestingly, the addition of excess bisMTX did not result in formation of the binary complex (1 protein:1 dimerizer) over the ternary complex (2 proteins:1 dimerizer), which suggests cooperative binding interactions (affinity modulation) between the two DHFR molecules in the bisMTX:DHFR(2) ternary complex. CONCLUSIONS The combination of DHFR and bisMTX provides a new CID system with properties that could be useful for applications in vivo. Formation of the bisMTX:DHFR(2) ternary complex in vitro is promoted over a wide range of dimerizer concentrations, consistent with the idea that formation of the ternary complex recruits energetically favorable interactions between the DHFR monomers in the complex.

Collaboration


Dive into the Robert F. Standaert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederick A. Heberle

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David R. Pepperberg

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Jonathan D. Nickels

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeremy C. Smith

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sarwat Chowdhury

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Xiaolin Cheng

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Amandeep K. Sangha

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge