Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John L. Van Hemert is active.

Publication


Featured researches published by John L. Van Hemert.


Nucleic Acids Research | 2012

PLEXdb: gene expression resources for plants and plant pathogens

Sudhansu Dash; John L. Van Hemert; Lu Hong; Roger P. Wise; Julie A. Dickerson

PLEXdb (http://www.plexdb.org), in partnership with community databases, supports comparisons of gene expression across multiple plant and pathogen species, promoting individuals and/or consortia to upload genome-scale data sets to contrast them to previously archived data. These analyses facilitate the interpretation of structure, function and regulation of genes in economically important plants. A list of Gene Atlas experiments highlights data sets that give responses across different developmental stages, conditions and tissues. Tools at PLEXdb allow users to perform complex analyses quickly and easily. The Model Genome Interrogator (MGI) tool supports mapping gene lists onto corresponding genes from model plant organisms, including rice and Arabidopsis. MGI predicts homologies, displays gene structures and supporting information for annotated genes and full-length cDNAs. The gene list-processing wizard guides users through PLEXdb functions for creating, analyzing, annotating and managing gene lists. Users can upload their own lists or create them from the output of PLEXdb tools, and then apply diverse higher level analyses, such as ANOVA and clustering. PLEXdb also provides methods for users to track how gene expression changes across many different experiments using the Gene OscilloScope. This tool can identify interesting expression patterns, such as up-regulation under diverse conditions or checking any gene’s suitability as a steady-state control.


BMC Bioinformatics | 2009

Arabidopsis gene co-expression network and its functional modules

Linyong Mao; John L. Van Hemert; Sudhansu Dash; Julie A. Dickerson

BackgroundBiological networks characterize the interactions of biomolecules at a systems-level. One important property of biological networks is the modular structure, in which nodes are densely connected with each other, but between which there are only sparse connections. In this report, we attempted to find the relationship between the network topology and formation of modular structure by comparing gene co-expression networks with random networks. The organization of gene functional modules was also investigated.ResultsWe constructed a genome-wide Arabidopsis gene co-expression network (AGCN) by using 1094 microarrays. We then analyzed the topological properties of AGCN and partitioned the network into modules by using an efficient graph clustering algorithm. In the AGCN, 382 hub genes formed a clique, and they were densely connected only to a small subset of the network. At the module level, the network clustering results provide a systems-level understanding of the gene modules that coordinate multiple biological processes to carry out specific biological functions. For instance, the photosynthesis module in AGCN involves a very large number (> 1000) of genes which participate in various biological processes including photosynthesis, electron transport, pigment metabolism, chloroplast organization and biogenesis, cofactor metabolism, protein biosynthesis, and vitamin metabolism. The cell cycle module orchestrated the coordinated expression of hundreds of genes involved in cell cycle, DNA metabolism, and cytoskeleton organization and biogenesis. We also compared the AGCN constructed in this study with a graphical Gaussian model (GGM) based Arabidopsis gene network. The photosynthesis, protein biosynthesis, and cell cycle modules identified from the GGM network had much smaller module sizes compared with the modules found in the AGCN, respectively.ConclusionThis study reveals new insight into the topological properties of biological networks. The preferential hub-hub connections might be necessary for the formation of modular structure in gene co-expression networks. The study also reveals new insight into the organization of gene functional modules.


BMC Research Notes | 2012

Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences

Jérôme Grimplet; John L. Van Hemert; Pablo Carbonell-Bejerano; José Díaz-Riquelme; Julie A. Dickerson; Anne Fennell; Mario Pezzotti; José M. Martínez-Zapater

BackgroundThe first draft assembly and gene prediction of the grapevine genome (8X base coverage) was made available to the scientific community in 2007, and functional annotation was developed on this gene prediction. Since then additional Sanger sequences were added to the 8X sequences pool and a new version of the genomic sequence with superior base coverage (12X) was produced.ResultsIn order to more efficiently annotate the function of the genes predicted in the new assembly, it is important to build on as much of the previous work as possible, by transferring 8X annotation of the genome to the 12X version. The 8X and 12X assemblies and gene predictions of the grapevine genome were compared to answer the question, “Can we uniquely map 8X predicted genes to 12X predicted genes?” The results show that while the assemblies and gene structure predictions are too different to make a complete mapping between them, most genes (18,725) showed a one-to-one relationship between 8X predicted genes and the last version of 12X predicted genes. In addition, reshuffled genomic sequence structures appeared. These highlight regions of the genome where the gene predictions need to be taken with caution. Based on the new grapevine gene functional annotation and in-depth functional categorization, twenty eight new molecular networks have been created for VitisNet while the existing networks were updated.ConclusionsThe outcomes of this study provide a functional annotation of the 12X genes, an update of VitisNet, the system of the grapevine molecular networks, and a new functional categorization of genes. Data are available at the VitisNet website (http://www.sdstate.edu/ps/research/vitis/pathways.cfm).


PLOS ONE | 2009

VitisNet: “Omics” Integration through Grapevine Molecular Networks

Jérôme Grimplet; Grant R. Cramer; Julie A. Dickerson; Kathy Mathiason; John L. Van Hemert; Anne Fennell

Background Genomic data release for the grapevine has increased exponentially in the last five years. The Vitis vinifera genome has been sequenced and Vitis EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet). Methodology/Principal Findings The sequences from the Vitis vinifera (cv. Pinot Noir PN40024) genome sequencing project and ESTs from the Vitis genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 “Metabolic”, 15 “Genetic Information Processing”, 12 “Environmental Information Processing”, 3 “Cellular Processes”, 21 “Transport”, and 80 “Transcription Factors”. The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment. Conclusions/Significance VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the Vitis vinifera genome (currently at 8x coverage) and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at http://metnet3.vrac.iastate.edu/. All VitisNet files including the manual annotation of the grape genome encompassing pathway names, individual genes, their genome identifier, and chromosome location can be accessed and downloaded from the VitisNet tab at http://vitis-dormancy.sdstate.org.


BMC Genomics | 2010

A garter snake transcriptome: pyrosequencing, de novo assembly, and sex-specific differences

Tonia S. Schwartz; Hongseok Tae; Youngik Yang; Keithanne Mockaitis; John L. Van Hemert; Stephen R. Proulx; Jeong Hyeon Choi; Anne M. Bronikowski

BackgroundThe reptiles, characterized by both diversity and unique evolutionary adaptations, provide a comprehensive system for comparative studies of metabolism, physiology, and development. However, molecular resources for ectothermic reptiles are severely limited, hampering our ability to study the genetic basis for many evolutionarily important traits such as metabolic plasticity, extreme longevity, limblessness, venom, and freeze tolerance. Here we use massively parallel sequencing (454 GS-FLX Titanium) to generate a transcriptome of the western terrestrial garter snake (Thamnophis elegans) with two goals in mind. First, we develop a molecular resource for an ectothermic reptile; and second, we use these sex-specific transcriptomes to identify differences in the presence of expressed transcripts and potential genes of evolutionary interest.ResultsUsing sex-specific pools of RNA (one pool for females, one pool for males) representing 7 tissue types and 35 diverse individuals, we produced 1.24 million sequence reads, which averaged 366 bp in length after cleaning. Assembly of the cleaned reads from both sexes with NEWBLER and MIRA resulted in 96,379 contigs containing 87% of the cleaned reads. Over 34% of these contigs and 13% of the singletons were annotated based on homology to previously identified proteins. From these homology assignments, additional clustering, and ORF predictions, we estimate that this transcriptome contains ~13,000 unique genes that were previously identified in other species and over 66,000 transcripts from unidentified protein-coding genes. Furthermore, we use a graph-clustering method to identify contigs linked by NEWBLER-split reads that represent divergent alleles, gene duplications, and alternatively spliced transcripts. Beyond gene identification, we identified 95,295 SNPs and 31,651 INDELs. From these sex-specific transcriptomes, we identified 190 genes that were only present in the mRNA sequenced from one of the sexes (84 female-specific, 106 male-specific), and many highly variable genes of evolutionary interest.ConclusionsThis is the first large-scale, multi-organ transcriptome for an ectothermic reptile. This resource provides the most comprehensive set of EST sequences available for an individual ectothermic reptile species, increasing the number of snake ESTs 50-fold. We have identified genes that appear to be under evolutionary selection and those that are sex-specific. This resource will assist studies on gene expression and comparative genomics, and will facilitate the study of evolutionarily important traits at the molecular level.


Bioinformatics | 2010

PathwayAccess: CellDesigner plugins for pathway databases

John L. Van Hemert; Julie A. Dickerson

Summary: CellDesigner provides a user-friendly interface for graphical biochemical pathway description. Many pathway databases are not directly exportable to CellDesigner models. PathwayAccess is an extensible suite of CellDesigner plugins, which connect CellDesigner directly to pathway databases using respective Java application programming interfaces. The process is streamlined for creating new PathwayAccess plugins for specific pathway databases. Three PathwayAccess plugins, MetNetAccess, BioCycAccess and ReactomeAccess, directly connect CellDesigner to the pathway databases MetNetDB, BioCyc and Reactome. PathwayAccess plugins enable CellDesigner users to expose pathway data to analytical CellDesigner functions, curate their pathway databases and visually integrate pathway data from different databases using standard Systems Biology Markup Language and Systems Biology Graphical Notation. Availability: Implemented in Java, PathwayAccess plugins run with CellDesigner version 4.0.1 and were tested on Ubuntu Linux, Windows XP and 7, and MacOSX. Source code, binaries, documentation and video walkthroughs are freely available at http://vrac.iastate.edu/∼jlv Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Computer Methods and Programs in Biomedicine | 2011

Monte Carlo randomization tests for large-scale abundance datasets on the GPU

John L. Van Hemert; Julie A. Dickerson

Statistical tests are often performed to discover which experimental variables are reacting to specific treatments. Time-series statistical models usually require the researcher to make assumptions with respect to the distribution of measured responses which may not hold. Randomization tests can be applied to data in order to generate null distributions non-parametrically. However, large numbers of randomizations are required for the precise p-values needed to control false discovery rates. When testing tens of thousands of variables (genes, chemical compounds, or otherwise), significant q-value cutoffs can be extremely small (on the order of 10(-5) to 10(-8)). This requires high-precision p-values, which in turn require large numbers of randomizations. The NVIDIA(®) Compute Unified Device Architecture(®) (CUDA(®)) platform for General Programming on the Graphics Processing Unit (GPGPU) was used to implement an application which performs high-precision randomization tests via Monte Carlo sampling for quickly screening custom test statistics for experiments with large numbers of variables, such as microarrays, Next-Generation sequencing read counts, chromatographical signals, or other abundance measurements. The software has been shown to achieve up to more than 12 fold speedup on a Graphics Processing Unit (GPU) when compared to a powerful Central Processing Unit (CPU). The main limitation is concurrent random access of shared memory on the GPU. The software is available from the authors.


Bioinformatics | 2010

OmicsAnalyzer: a Cytoscape plug-in suite for modeling omics data

Tian Xia; John L. Van Hemert; Julie A. Dickerson

Summary: OmicsAnalyzer is a Cytoscape plug-in for visual omics-based network analysis that (i) integrates hetero-omics data for one or more species; (ii) performs statistical tests on the integrated datasets; and (iii) visualizes results in a network context. Availability: Implemented in Java, OmicsAnalyzer runs with Cytoscape 2.6 and 2.7. Binaries, documentation and video walkthroughs are freely available at http://vrac.iastate.edu/~jlv/omicsanalyzer/ Contact: [email protected]; [email protected]


PLOS ONE | 2018

Identification and comparison of key RNA interference machinery from western corn rootworm, fall armyworm, and southern green stink bug

Courtney Davis-Vogel; Brandon Van Allen; John L. Van Hemert; Amit Sethi; Mark E. Nelson; Dipali G. Sashital

RNA interference (RNAi)-based technology shows great potential for use in agriculture, particularly for management of costly insect pests. In the decade since the insecticidal effects of environmentally-introduced RNA were first reported, this treatment has been applied to several types of insect pests. Through the course of those efforts, it has become apparent that different insects exhibit a range of sensitivity to environmentally-introduced RNAs. The variation in responses across insect is not well-understood, with differences in the underlying RNAi mechanisms being one explanation. This study evaluates eight proteins among three agricultural pests whose responses to environmental RNAi are known to differ: western corn rootworm (Diabrotica virgifera virgifera), fall armyworm (Spodoptera frugiperda), and southern green stink bug (Nezara viridula). These proteins have been identified in various organisms as centrally involved in facilitating the microRNA- and small interfering-RNA-mediated interference responses. Various bioinformatics tools, as well as gene expression profiling, were used to identify and evaluate putative homologues for characteristics that may contribute to the differing responses of these insects, such as the absence of critical functional domains within expressed sequences, the absence of entire gene sequences, or unusually low or undetectable expression of critical genes. Though many similarities were observed, the number of isoforms and expression levels of double-stranded RNA-binding and argonaute proteins varied across insect. Differences among key RNAi machinery genes of these three pests may impact the function of their RNAi pathways, and therefore, their respective responses to exogenous RNAs.


Bioinformatics | 2012

Discriminating response groups in metabolic and regulatory pathway networks

John L. Van Hemert; Julie A. Dickerson

MOTIVATION Analysis of omics experiments generates lists of entities (genes, metabolites, etc.) selected based on specific behavior, such as changes in response to stress or other signals. Functional interpretation of these lists often uses category enrichment tests using functional annotations like Gene Ontology terms and pathway membership. This approach does not consider the connected structure of biochemical pathways or the causal directionality of events. RESULTS The Omics Response Group (ORG) method, described in this work, interprets omics lists in the context of metabolic pathway and regulatory networks using a statistical model for flow within the networks. Statistical results for all response groups are visualized in a novel Pathway Flow plot. The statistical tests are based on the Erlang distribution model under the assumption of independent and identically Exponential-distributed random walk flows through pathways. As a proof of concept, we applied our method to an Escherichia coli transcriptomics dataset where we confirmed common knowledge of the E.coli transcriptional response to Lipid A deprivation. The main response is related to osmotic stress, and we were also able to detect novel responses that are supported by the literature. We also applied our method to an Arabidopsis thaliana expression dataset from an abscisic acid study. In both cases, conventional pathway enrichment tests detected nothing, while our approach discovered biological processes beyond the original studies. AVAILABILITY We created a prototype for an interactive ORG web tool at http://ecoserver.vrac.iastate.edu/pathwayflow (source code is available from https://subversion.vrac.iastate.edu/Subversion/jlv/public/jlv/pathwayflow). The prototype is described along with additional figures and tables in Supplementary Material. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

Collaboration


Dive into the John L. Van Hemert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Fennell

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tian Xia

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit Sethi

Louisiana State University Agricultural Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge