John Lusingu
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John Lusingu.
Lancet Infectious Diseases | 2011
Ally Olotu; John Lusingu; Amanda Leach; Marc Lievens; Johan Vekemans; Salum Msham; Trudie Lang; Jayne Gould; Marie-Claude Dubois; Erik Jongert; Preeti Vansadia; Terrell Carter; Patricia Njuguna; Ken Awuondo; Anangisye Malabeja; Omar Abdul; Samwel Gesase; Neema Mturi; Chris Drakeley; Barbara Savarese; Tonya Villafana; Didier Lapierre; W. Ripley Ballou; Joe Cohen; Martha M. Lemnge; Norbert Peshu; Kevin Marsh; Eleanor M. Riley; Lorenz von Seidlein; Philip Bejon
Summary Background RTS,S/AS01E is the lead candidate malaria vaccine. We recently showed efficacy against clinical falciparum malaria in 5–17 month old children, during an average of 8 months follow-up. We aimed to assess the efficacy of RTS,S/AS01E during 15 months of follow-up. Methods Between March, 2007, and October, 2008, we enrolled healthy children aged 5–17 months in Kilifi, Kenya, and Korogwe, Tanzania. Computer-generated block randomisation was used to randomly assign participants (1:1) to receive three doses (at month 0, 1, and 2) of either RTS,S/AS01E or human diploid-cell rabies vaccine. The primary endpoint was time to first clinical malaria episode, defined as the presence of fever (temperature ≥37·5°C) and a Plasmodium falciparum density of 2500/μL or more. Follow-up was 12 months for children from Korogwe and 15 months for children from Kilifi. Primary analysis was per protocol. In a post-hoc modelling analysis we characterised the associations between anti-circumsporozoite antibodies and protection against clinical malaria episodes. This study is registered with ClinicalTrials.gov, number NCT00380393. Findings 894 children were assigned, 447 in each treatment group. In the per-protocol analysis, 82 of 415 children in the RTS,S/AS01E group and 125 of 420 in the rabies vaccine group had first or only clinical malaria episode by 12 months, vaccine efficacy 39·2% (95% CI 19·5–54·1, p=0·0005). At 15 months follow-up, 58 of 209 children in the RTS,S/AS01E group and 85 of 206 in the rabies vaccine group had first or only clinical malaria episode, vaccine efficacy 45·8% (24·1–61·3, p=0·0004). At 12 months after the third dose, anti-circumsporozoite antibody titre data were available for 390 children in the RTS,S/AS01E group and 391 in the rabies group. A mean of 15 months (range 12–18 months) data were available for 172 children in the RTS,S/AS01E group and 155 in the rabies group. These titres at 1 month after the third dose were not associated with protection, but titres at 6·5 months were. The level of protection increased abruptly over a narrow range of antibody concentrations. The most common adverse events were pneumonia, febrile convulsion, gastroenteritis, and P falciparum malaria. Interpretation RTS,S/AS01E confers sustained efficacy for at least 15 months and shows promise as a potential public health intervention against childhood malaria in malaria endemic countries. Funding PATH Malaria Vaccine Initiative (MVI), GlaxoSmithKline.
The Journal of Infectious Diseases | 2005
Chris Drakeley; Ilona Carneiro; Hugh Reyburn; Robert Malima; John Lusingu; Jonathan Cox; Thor G. Theander; Watoky Mmm Nkya; Martha M. Lemnge; Eleanor M. Riley
BACKGROUNDnEffective malaria control requires information about intensity of transmission across large areas and populations. Estimates based on entomological factors lack precision and are not cost-effective to obtain. We tested altitude and rainfall measurements as correlates of transmission intensity in different ecological settings.nnnMETHODSnWe conducted 2 cross-sectional surveys of approximately 12,000 people (1-45 years old) in 6 altitude transects (150-1800 m) in the Kilimanjaro and Tanga regions of Tanzania. Data were analyzed for associations with altitude and rainfall estimates by use of appropriate regression models.nnnRESULTSnPlasmodium falciparum prevalence showed a negative relationship with altitude (19% and 21% decrease/100-m altitude increase, respectively, in children in Kilimanjaro and Tanga) and rainfall during the 3 months before the survey (46% decrease/100-mm rainfall increase in children in Kilimanjaro). Mean hemoglobin concentrations increased with altitude (0.05 and 0.09 g/dL/100-m altitude increase, respectively, in children in Kilimanjaro and Tanga) and rainfall (0.17 g/dL/100-mm rainfall increase in children and adults in Kilimanjaro).nnnDISCUSSIONnAltitude and rainfall were correlated with parasite prevalence and mean hemoglobin concentration; however, the relationship varied according to ecological setting. Climatological variables alone cannot predict malarial outcomes. Local variations in seasonality of malaria transmission--together with vector species composition, topography, host and parasite genetics, and socioeconomic factors--may influence malaria prevalence.
Lancet Infectious Diseases | 2015
Michael T. White; Robert Verity; Jamie T. Griffin; Kwaku Poku Asante; Seth Owusu-Agyei; Brian Greenwood; Chris Drakeley; Samwel Gesase; John Lusingu; Daniel Ansong; Samuel Adjei; Tsiri Agbenyega; Bernhards Ogutu; Lucas Otieno; Walter Otieno; Selidji Todagbe Agnandji; Bertrand Lell; Peter G. Kremsner; Irving Hoffman; Francis Martinson; Portia Kamthunzu; Halidou Tinto; Innocent Valea; Hermann Sorgho; Martina Oneko; Kephas Otieno; Mary J. Hamel; Nahya Salim; Ali Mtoro; Salim Abdulla
Summary Background The RTS,S/AS01 malaria vaccine targets the circumsporozoite protein, inducing antibodies associated with the prevention of Plasmodium falciparum infection. We assessed the association between anti-circumsporozoite antibody titres and the magnitude and duration of vaccine efficacy using data from a phase 3 trial done between 2009 and 2014. Methods Using data from 8922 African children aged 5–17 months and 6537 African infants aged 6–12 weeks at first vaccination, we analysed the determinants of immunogenicity after RTS,S/AS01 vaccination with or without a booster dose. We assessed the association between the incidence of clinical malaria and anti-circumsporozoite antibody titres using a model of anti-circumsporozoite antibody dynamics and the natural acquisition of protective immunity over time. Findings RTS,S/AS01-induced anti-circumsporozoite antibody titres were greater in children aged 5–17 months than in those aged 6–12 weeks. Pre-vaccination anti-circumsporozoite titres were associated with lower immunogenicity in children aged 6–12 weeks and higher immunogenicity in those aged 5–17 months. The immunogenicity of the booster dose was strongly associated with immunogenicity after primary vaccination. Anti-circumsporozoite titres wane according to a biphasic exponential distribution. In participants aged 5–17 months, the half-life of the short-lived component of the antibody response was 45 days (95% credible interval 42–48) and that of the long-lived component was 591 days (557–632). After primary vaccination 12% (11–13) of the response was estimated to be long-lived, rising to 30% (28–32%) after a booster dose. An anti-circumsporozoite antibody titre of 121 EU/mL (98–153) was estimated to prevent 50% of infections. Waning anti-circumsporozoite antibody titres predict the duration of efficacy against clinical malaria across different age categories and transmission intensities, and efficacy wanes more rapidly at higher transmission intensity. Interpretation Anti-circumsporozoite antibody titres are a surrogate of protection for the magnitude and duration of RTS,S/AS01 efficacy, with or without a booster dose, providing a valuable surrogate of effectiveness for new RTS,S formulations in the age groups considered. Funding UK Medical Research Council.
The Journal of Infectious Diseases | 2011
Philip Bejon; Jackie Cook; Elke S. Bergmann-Leitner; Ally Olotu; John Lusingu; Jedidah Mwacharo; Johan Vekemans; Patricia Njuguna; Amanda Leach; Marc Lievens; Sheetij Dutta; Lorenz von Seidlein; Barbara Savarese; Tonya Villafana; Martha M. Lemnge; Joe Cohen; Kevin Marsh; Patrick H. Corran; Evelina Angov; Eleanor M. Riley; Chris Drakeley
(See the article by Greenhouse et al, on pages 19-26.) Background.u2003RTS,S/AS01E is the lead candidate malaria vaccine and confers pre-erythrocytic immunity. Vaccination may therefore impact acquired immunity to blood-stage malaria parasites after natural infection. Methods.u2003We measured, by enzyme-linked immunosorbent assay, antibodies to 4 Plasmodium falciparum merozoite antigens (AMA-1, MSP-142, EBA-175, and MSP-3) and by growth inhibitory activity (GIA) using 2 parasite clones (FV0 and 3D7) at 4 times on 860 children who were randomized to receive with RTS,S/AS01E or a control vaccine. Results.u2003Antibody concentrations to AMA-1, EBA-175, and MSP-142 decreased with age during the first year of life, then increased to 32 months of age. Anti–MSP-3 antibody concentrations gradually increased, and GIA gradually decreased up to 32 months. Vaccination with RTS,S/AS01E resulted in modest reductions in AMA-1, EBA-175, MSP-142, and MSP-3 antibody concentrations and no significant change in GIA. Increasing anti-merozoite antibody concentrations and GIA were prospectively associated with increased risk of clinical malaria. Conclusions.u2003Vaccination with RTS,S/AS01E reduces exposure to blood-stage parasites and, thus, reduces anti-merozoite antigen antibody concentrations. However, in this study, these antibodies were not correlates of clinical immunity to malaria. Instead, heterogeneous exposure led to confounded, positive associations between increasing antibody concentration and increasing risk of clinical malaria.
Embo Molecular Medicine | 2016
Jakob S. Jespersen; Christian W. Wang; Sixbert I. Mkumbaye; Daniel T. R. Minja; Bent Petersen; Louise Turner; Jens Petersen; John Lusingu; Thor G. Theander; Thomas Lavstsen
Most severe Plasmodium falciparum infections are experienced by young children. Severe symptoms are precipitated by vascular sequestration of parasites expressing a particular subset of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion molecules. Parasites binding human endothelial protein C receptor (EPCR) through the CIDRα1 domain of certain PfEMP1 were recently associated with severe malaria in children. However, it has remained unclear to which extend the EPCR‐binding CIDRα1 domains epitomize PfEMP1 expressed in severe malaria. Here, we characterized the near full‐length transcripts dominating the var transcriptome in children with severe malaria and found that the only common feature of the encoded PfEMP1 was CIDRα1 domains. Such genes were highly and dominantly expressed in both children with severe malarial anaemia and cerebral malaria. These observations support the hypothesis that the CIDRα1‐EPCR interaction is key to the pathogenesis of severe malaria and strengthen the rationale for pursuing a vaccine or adjunctive treatment aiming at inhibiting or reducing the damaging effects of this interaction.
PLOS ONE | 2013
Christentze Schmiegelow; Daniel Thomas Minja; Mayke Oesterholt; Caroline Pehrson; Hannah Elena Suhrs; Stéphanie Boström; Martha M. Lemnge; Pamela Magistrado; Vibeke Rasch; Birgitte Bruun Nielsen; John Lusingu; Thor G. Theander
Background Pregnancy associated malaria is associated with decreased birth weight, but in-utero evaluation of fetal growth alterations is rarely performed. The objective of this study was to investigate malaria induced changes in fetal growth during the 3rd trimester using trans-abdominal ultrasound. Methods An observational study of 876 pregnant women (398 primi- and secundigravidae and 478 multigravidae) was conducted in Tanzania. Fetal growth was monitored with ultrasound and screening for malaria was performed regularly. Birth weight and fetal weight were converted to z-scores, and fetal growth evaluated as fetal weight gain from the 26th week of pregnancy. Results Malaria infection only affected birth weight and fetal growth among primi- and secundigravid women. Forty-eight of the 398 primi- and secundigravid women had malaria during pregnancy causing a reduction in the newborns z-score of −0.50 (95% CI: −0.86, −0.13, Pu200a=u200a0.008, multiple linear regression). Fifty-eight percent (28/48) of the primi- and secundigravidae had malaria in the first half of pregnancy, but an effect on fetal growth was observed in the 3rd trimester with an OR of 4.89 for the fetal growth rate belonging to the lowest 25% in the population (95%CI: 2.03–11.79, P<0.001, multiple logistic regression). At an individual level, among the primi- and secundigravidae, 27% experienced alterations of fetal growth immediately after exposure but only for a short interval, 27% only late in pregnancy, 16.2% persistently from exposure until the end of pregnancy, and 29.7% had no alterations of fetal growth. Conclusions The effect of malaria infections was observed during the 3rd trimester, despite infections occurring much earlier in pregnancy, and different mechanisms might operate leading to different patterns of growth alterations. This study highlights the need for protection against malaria throughout pregnancy and the recognition that observed changes in fetal growth might be a consequence of an infection much earlier in pregnancy.
Malaria Journal | 2016
Coline Mahende; Billy Ngasala; John Lusingu; Tai Soon Yong; Paminus Lushino; Martha M. Lemnge; Bruno Mmbando; Zul Premji
BackgroundRapid diagnostic tests (RDT) and light microscopy are still recommended for diagnosis to guide the clinical management of malaria despite difficult challenges in rural settings. The performance of these tests may be affected by several factors, including malaria prevalence and intensity of transmission. The study evaluated the diagnostic performance of malaria RDT, light microscopy and polymerase chain reaction (PCR) in detecting malaria infections among febrile children at outpatient clinic in Korogwe District, northeastern Tanzania.MethodsThe study enrolled children aged 2–59xa0months with fever and/or history of fever in the previous 48xa0h attending outpatient clinics. Blood samples were collected for identification of Plasmodium falciparum infection using histidine-rich-protein-2 (HRP-2)-based malaria RDT, light microscopy and conventional PCR.ResultsA total of 867 febrile patients were enrolled into the study. Malaria-positive samples were 85/867 (9.8xa0%, 95xa0% CI, 7.9–12.0xa0%) by RDT, 72/867 (8.3xa0%, 95xa0% CI, 6.5–10.1xa0%) by microscopy and 79/677 (11.7xa0%, 95xa0% CI, 9.3–14.3xa0%) by PCR. The performance of malaria RDT compared with microscopy results had sensitivity and positive predictive value (PPV) of 88.9xa0% (95xa0% CI, 79.3–95.1xa0%) and 75.3xa0% (95xa0% CI, 64.8–84.0xa0%), respectively. Confirmation of P. falciparum infection with PCR analysis provided lower sensitivity and PPV of 88.6xa0% (95xa0% CI, 79.5–94.7xa0%) and 84.3xa0% (95xa0% CI, 74.7–91.4xa0%) for RDT compared to microscopy.ConclusionDiagnosis of malaria infection is still a challenge due to variation in results among diagnostic methods. HRP-2 malaria RDT and microscopy were less sensitive than PCR. Diagnostic tools with high sensitivity are required in areas of low malaria transmission.
BMJ | 2017
Anne C C Lee; Naoko Kozuki; Simon Cousens; Gretchen A Stevens; Hannah Blencowe; Mariangela Freitas da Silveira; Ayesha Sania; Heather E. Rosen; Christentze Schmiegelow; Linda S. Adair; Abdullah H. Baqui; Fernando C. Barros; Zulfiqar A. Bhutta; Laura E. Caulfield; Parul Christian; Siân E. Clarke; Wafaie W. Fawzi; Rogelio Gonzalez; Jean H. Humphrey; Lieven Huybregts; Simon Kariuki; Patrick Kolsteren; John Lusingu; Dharma Manandhar; Aroonsri Mongkolchati; Luke C. Mullany; Richard Ndyomugyenyi; Jyh Kae Nien; Dominique Roberfroid; Naomi Saville
Objectives To estimate small for gestational age birth prevalence and attributable neonatal mortality in low and middle income countries with the INTERGROWTH-21st birth weight standard. Design Secondary analysis of data from the Child Health Epidemiology Reference Group (CHERG), including 14 birth cohorts with gestational age, birth weight, and neonatal follow-up. Small for gestational age was defined as infants weighing less than the 10th centile birth weight for gestational age and sex with the multiethnic, INTERGROWTH-21st birth weight standard. Prevalence of small for gestational age and neonatal mortality risk ratios were calculated and pooled among these datasets at the regional level. With available national level data, prevalence of small for gestational age and population attributable fractions of neonatal mortality attributable to small for gestational age were estimated. Setting CHERG birth cohorts from 14 population based sites in low and middle income countries. Main outcome measures In low and middle income countries in the year 2012, the number and proportion of infants born small for gestational age; number and proportion of neonatal deaths attributable to small for gestational age; the number and proportion of neonatal deaths that could be prevented by reducing the prevalence of small for gestational age to 10%. Results In 2012, an estimated 23.3 million infants (uncertainty range 17.6 to 31.9; 19.3% of live births) were born small for gestational age in low and middle income countries. Among these, 11.2 million (0.8 to 15.8) were term and not low birth weight (≥2500 g), 10.7 million (7.6 to 15.0) were term and low birth weight (<2500 g) and 1.5 million (0.9 to 2.6) were preterm. In low and middle income countries, an estimated 606u2009500 (495u2009000 to 773u2009000) neonatal deaths were attributable to infants born small for gestational age, 21.9% of all neonatal deaths. The largest burden was in South Asia, where the prevalence was the highest (34%); about 26% of neonatal deaths were attributable to infants born small for gestational age. Reduction of the prevalence of small for gestational age from 19.3% to 10.0% in these countries could reduce neonatal deaths by 9.2% (254u2009600 neonatal deaths; 164u2009800 to 449u2009700). Conclusions In low and middle income countries, about one in five infants are born small for gestational age, and one in four neonatal deaths are among such infants. Increased efforts are required to improve the quality of care for and survival of these high risk infants in low and middle income countries
Infection and Immunity | 2015
Louise Turner; Thomas Lavstsen; Bruno P. Mmbando; Christian W. Wang; Pamela Magistrado; Lasse S. Vestergaard; Deus S. Ishengoma; Daniel T. R. Minja; John Lusingu; Thor G. Theander
ABSTRACT Severe malaria syndromes are precipitated by Plasmodium falciparum parasites binding to endothelial receptors on the vascular lining. This binding is mediated by members of the highly variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. We have previously identified a subset of PfEMP1 proteins associated with severe malaria and found that the receptor for these PfEMP1 variants is endothelial protein C receptor (EPCR). The binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDR) of the subtypes α1.1 and α1.4 to α1.8. In this study, we investigated the acquisition of anti-CIDR antibodies using plasma samples collected in four study villages with different malaria transmission intensities in northeastern Tanzania during a period with a decline in malaria transmission. We show that individuals exposed to high levels of malaria transmission acquire antibodies to EPCR-binding CIDR domains early in life and that these antibodies are acquired more rapidly than antibodies to other CIDR domains. The rate by which antibodies to EPCR-binding CIDR domains are acquired in populations in areas where malaria is endemic is determined by the malaria transmission intensity, and on a population level, the antibodies are rapidly lost if transmission is interrupted. This indicates that sustained exposure is required to maintain the production of the antibodies.
Malaria Journal | 2015
Helle H Hansson; Louise Turner; Line Møller; Christian W. Wang; Daniel T. R. Minja; Samwel Gesase; Bruno Mmbando; Ib C. Bygbjerg; Thor G. Theander; John Lusingu; Michael Alifrangis; Thomas Lavstsen
AbstractBackgroundEndothelial protein C receptor (EPCR) was recently identified as a key receptor for Plasmodium falciparum erythrocyte membrane protein 1 mediating sequestration of P. falciparum-infected erythrocytes in patients suffering from severe malaria. Soluble EPCR (sEPCR) inhibits binding of P. falciparum to EPCR in vitro and increased levels of sEPCR have been associated with the H3 haplotype of the EPCR encoding PROCR gene. It has been hypothesized that elevated sEPCR levels, possibly linked to the PROCR H3 genetic variant, may confer protection against severe forms of malaria. This study determined the frequencies of PROCR haplotypes H1–4 and plasma levels of sEPCR in a Tanzanian study population to investigate a possible association with severe malaria.nMethodsStudy participants were children under 5xa0years of age admitted at the Korogwe District Hospital (Nxa0=xa0143), and diagnosed as having severe malaria (Nxa0=xa052; including cerebral malaria Nxa0=xa017), uncomplicated malaria (Nxa0=xa024), or an infection other than malaria (Nxa0=xa067). In addition, blood samples from 71 children living in nearby villages were included. The SNPs defining the haplotypes of PROCR gene were determined by post-PCR ligation detection reaction-fluorescent microsphere assay.ResultsIndividuals carrying at least one H3 allele had significantly higher levels of sEPCR than individuals with no H3 alleles (Pxa0<xa00.001). No difference in the frequency of H3 was found between the non-malaria patients, malaria patients or the village population (Pxa0>xa00.1). Plasma levels of sEPCR differed between these three groups, with higher sEPCR levels in the village population compared to the hospitalized patients (Pxa0<xa00.001) and higher levels in malaria patients compared to non-malaria patients (Pxa0=xa00.001). However, no differences were found in the distribution of H3 (Pxa0=xa00.2) or levels of sEPCR (Pxa0=xa00.8) between patients diagnosed with severe and uncomplicated malaria.ConclusionFrequencies of SNPs determining PROCR haplotypes were in concordance with other African studies. The PROCR H3 allele was associated with higher levels of sEPCR, confirming earlier findings, however, in this Tanzanian population; neither PROCR haplotype nor level of sEPCR was associated with severe malaria, however, larger studies are needed to confirm these findings.