Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louise Turner is active.

Publication


Featured researches published by Louise Turner.


Journal of Experimental Medicine | 2004

Evidence for the Involvement of VAR2CSA in Pregnancy-associated Malaria

Ali Salanti; Madeleine Dahlbäck; Louise Turner; Morten A. Nielsen; Lea Barfod; Pamela Magistrado; Anja T. R. Jensen; Thomas Lavstsen; Michael F. Ofori; Kevin Marsh; Lars Hviid; Thor G. Theander

In Plasmodium falciparum–endemic areas, pregnancy-associated malaria (PAM) is an important health problem. The condition is precipitated by accumulation of parasite-infected erythrocytes (IEs) in the placenta, and this process is mediated by parasite-encoded variant surface antigens (VSA) binding to chondroitin sulfate A (CSA). Parasites causing PAM express unique VSA types, VSAPAM, which can be serologically classified as sex specific and parity dependent. It is sex specific because men from malaria-endemic areas do not develop VSAPAM antibodies; it is parity dependent because women acquire anti-VSAPAM immunoglobulin (Ig) G as a function of parity. Previously, it was shown that transcription of var2csa is up-regulated in placental parasites and parasites selected for CSA binding. Here, we show the following: (a) that VAR2CSA is expressed on the surface of CSA-selected IEs; (b) that VAR2CSA is recognized by endemic plasma in a sex-specific and parity-dependent manner; (c) that high anti-VAR2CSA IgG levels can be found in pregnant women from both West and East Africa; and (d) that women with high plasma levels of anti-VAR2CSA IgG give birth to markedly heavier babies and have a much lower risk of delivering low birth weight children than women with low levels.


Nature | 2013

Severe malaria is associated with parasite binding to endothelial protein C receptor

Louise Turner; Thomas Lavstsen; Sanne S. Berger; Christian W. Wang; Jens Petersen; Marion Avril; Andrew J. Brazier; Jim Freeth; Jakob S. Jespersen; Morten A. Nielsen; Pamela Magistrado; John Lusingu; Joseph D. Smith; Matthew K. Higgins; Thor G. Theander

Sequestration of Plasmodium falciparum-infected erythrocytes in host blood vessels is a key triggering event in the pathogenesis of severe childhood malaria, which is responsible for about one million deaths every year. Sequestration is mediated by specific interactions between members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family and receptors on the endothelial lining. Severe childhood malaria is associated with expression of specific PfEMP1 subtypes containing domain cassettes (DCs) 8 and 13 (ref. 3), but the endothelial receptor for parasites expressing these proteins was unknown. Here we identify endothelial protein C receptor (EPCR), which mediates the cytoprotective effects of activated protein C, as the endothelial receptor for DC8 and DC13 PfEMP1. We show that EPCR binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDRα1) of DC8 and group A PfEMP1 subfamilies, and that CIDRα1 interferes with protein C binding to EPCR. This PfEMP1 adhesive property links P. falciparum cytoadhesion to a host receptor involved in anticoagulation and endothelial cytoprotective pathways, and has implications for understanding malaria pathology and the development of new malaria interventions.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children

Thomas Lavstsen; Louise Turner; Fredy Saguti; Pamela Magistrado; Thomas Salhøj Rask; Jakob S. Jespersen; Christian W. Wang; Sanne S. Berger; Vito Baraka; Andrea M. Marquard; Andaine Seguin-Orlando; M. Thomas P. Gilbert; John Lusingu; Thor G. Theander

The clinical outcome of Plasmodium falciparum infections ranges from asymptomatic parasitemia to severe malaria syndromes associated with high mortality. The virulence of P. falciparum infections is associated with the type of P. falciparum erythrocyte membrane protein 1 (PfEMP1) expressed on the surface of infected erythrocytes to anchor these to the vascular lining. Although var2csa, the var gene encoding the PfEMP1 associated with placental malaria, was discovered in 2003, the identification of the var/PfEMP1 variants associated with severe malaria in children has remained elusive. To identify var/PfEMP1 variants associated with severe disease outcome, we compared var transcript levels in parasites from 88 children with severe malaria and 40 children admitted to the hospital with uncomplicated malaria. Transcript analysis was performed by RT-quantitative PCR using a set of 42 primer pairs amplifying var subtype-specific loci covering most var/PfEMP1 subtypes. In addition, we characterized the near-full-length sequence of the most prominently expressed var genes in three patients diagnosed with severe anemia and/or cerebral malaria. The combined analysis showed that severe malaria syndromes, including severe anemia and cerebral malaria, are associated with high transcript levels of PfEMP1 domain cassette 8-encoding var genes. Transcript levels of group A var genes, including genes encoding domain cassette 13, were also significantly higher in patients with severe syndromes compared with those with uncomplicated malaria. This study specifies the var/PfEMP1 types expressed in severe malaria in children, and thereby provides unique targets for future efforts to prevent and treat severe malaria infections.


The Journal of Infectious Diseases | 2005

High Level of var2csa Transcription by Plasmodium falciparum Isolated from the Placenta

Nicaise Tuikue Ndam; Ali Salanti; Gwladys Bertin; Madeleine Dahlbäck; Nadine Fievet; Louise Turner; Alioune Gaye; Thor G. Theander; Philippe Deloron

Plasmodium falciparum parasites that bind to chondroitin sulphate A (CSA) express unique variant surface antigens that are involved in the placental sequestration that precipitates pregnancy-associated malaria (PAM). Two var gene subfamilies, var1csa and var2csa, have been associated with CSA binding. We show here that placental P. falciparum isolates highly transcribed var2csa but not var1csa. var2csa was not transcribed or was only minimally transcribed by parasites isolated from nonpregnant women. Placental parasites that effectively bound to placental chondroitin sulphate proteoglycans transcribed higher levels of var2csa. In pregnant women, levels of var2csa transcription and plasma anti-VAR2CSA immunoglobulin G were associated. These findings support the idea that VAR2CSA plays a crucial role in PAM and strengthen the rationale for the development of VAR2CSA-based vaccines.


Proceedings of the National Academy of Sciences of the United States of America | 2012

A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells.

Antoine Claessens; Yvonne Adams; Ashfaq Ghumra; Gabriella Lindergard; Caitlin C. Buchan; Cheryl Andisi; Peter C. Bull; Sachel Mok; Archna P. Gupta; Christian W. Wang; Louise Turner; Mònica Arman; Ahmed Raza; Zbynek Bozdech; J. Alexandra Rowe

Cerebral malaria is the most deadly manifestation of infection with Plasmodium falciparum. The pathology of cerebral malaria is characterized by the accumulation of infected erythrocytes (IEs) in the microvasculature of the brain caused by parasite adhesins on the surface of IEs binding to human receptors on microvascular endothelial cells. The parasite and host molecules involved in this interaction are unknown. We selected three P. falciparum strains (HB3, 3D7, and IT/FCR3) for binding to a human brain endothelial cell line (HBEC-5i). The whole transcriptome of isogenic pairs of selected and unselected parasites was analyzed using a variant surface antigen-supplemented microarray chip. After selection, the most highly and consistently up-regulated genes were a subset of group A-like var genes (HB3var3, 3D7_PFD0020c, ITvar7, and ITvar19) that showed 11- to >100-fold increased transcription levels. These var genes encode P. falciparum erythrocyte membrane protein (PfEMP)1 variants with distinct N-terminal domain types (domain cassette 8 or domain cassette 13). Antibodies to HB3var3 and PFD0020c recognized the surface of live IEs and blocked binding to HBEC-5i, thereby confirming the adhesive function of these variants. The clinical in vivo relevance of the HBEC-selected parasites was supported by significantly higher surface recognition of HBEC-selected parasites compared with unselected parasites by antibodies from young African children suffering cerebral malaria (Mann–Whitney test, P = 0.029) but not by antibodies from controls with uncomplicated malaria (Mann–Whitney test, P = 0.58). This work describes a binding phenotype for virulence-associated group A P. falciparum erythrocyte membrane protein 1 variants and identifies targets for interventions to treat or prevent cerebral malaria.


Nature | 2013

PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum

Lubin Jiang; Jianbing Mu; Qingfeng Zhang; Ting Ni; Prakash Srinivasan; Kempaiah Rayavara; Wenjing Yang; Louise Turner; Thomas Lavstsen; Thor G. Theander; Weiqun Peng; Guiying Wei; Qingqing Jing; Yoshiyuki Wakabayashi; Abhisheka Bansal; Yan Luo; José M. C. Ribeiro; Artur Scherf; L. Aravind; Jun Zhu; Keji Zhao; Louis H. Miller

The variant antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), which is expressed on the surface of P. falciparum-infected red blood cells, is a critical virulence factor for malaria. Each parasite has 60 antigenically distinct var genes that each code for a different PfEMP1 protein. During infection the clonal parasite population expresses only one gene at a time before switching to the expression of a new variant antigen as an immune-evasion mechanism to avoid the host antibody response. The mechanism by which 59 of the 60 var genes are silenced remains largely unknown. Here we show that knocking out the P. falciparum variant-silencing SET gene (here termed PfSETvs), which encodes an orthologue of Drosophila melanogaster ASH1 and controls histone H3 lysine 36 trimethylation (H3K36me3) on var genes, results in the transcription of virtually all var genes in the single parasite nuclei and their expression as proteins on the surface of individual infected red blood cells. PfSETvs-dependent H3K36me3 is present along the entire gene body, including the transcription start site, to silence var genes. With low occupancy of PfSETvs at both the transcription start site of var genes and the intronic promoter, expression of var genes coincides with transcription of their corresponding antisense long noncoding RNA. These results uncover a previously unknown role of PfSETvs-dependent H3K36me3 in silencing var genes in P. falciparum that might provide a general mechanism by which orthologues of PfSETvs repress gene expression in other eukaryotes. PfSETvs knockout parasites expressing all PfEMP1 proteins may also be applied to the development of a malaria vaccine.


PLOS Pathogens | 2006

Epitope Mapping and Topographic Analysis of VAR2CSA DBL3X Involved in P. falciparum Placental Sequestration

Madeleine Dahlbäck; Thomas Salhøj Rask; Pernille Andersen; Morten A. Nielsen; Nicaise Tuikue Ndam; Mafalda Resende; Louise Turner; Philippe Deloron; Lars Hviid; Ole Lund; Anders Gorm Pedersen; Thor G. Theander; Ali Salanti

Pregnancy-associated malaria is a major health problem, which mainly affects primigravidae living in malaria endemic areas. The syndrome is precipitated by accumulation of infected erythrocytes in placental tissue through an interaction between chondroitin sulphate A on syncytiotrophoblasts and a parasite-encoded protein on the surface of infected erythrocytes, believed to be VAR2CSA. VAR2CSA is a polymorphic protein of approximately 3,000 amino acids forming six Duffy-binding-like (DBL) domains. For vaccine development it is important to define the antigenic targets for protective antibodies and to characterize the consequences of sequence variation. In this study, we used a combination of in silico tools, peptide arrays, and structural modeling to show that sequence variation mainly occurs in regions under strong diversifying selection, predicted to form flexible loops. These regions are the main targets of naturally acquired immunoglobulin gamma and accessible for antibodies reacting with native VAR2CSA on infected erythrocytes. Interestingly, surface reactive anti-VAR2CSA antibodies also target a conserved DBL3X region predicted to form an α-helix. Finally, we could identify DBL3X sequence motifs that were more likely to occur in parasites isolated from primi- and multigravidae, respectively. These findings strengthen the vaccine candidacy of VAR2CSA and will be important for choosing epitopes and variants of DBL3X to be included in a vaccine protecting women against pregnancy-associated malaria.


The Journal of Infectious Diseases | 2006

Dynamics of Anti-VAR2CSA Immunoglobulin G Response in a Cohort of Senegalese Pregnant Women

N. Tuikue Ndam; Ali Salanti; J.-Y. Le-Hesran; Gilles Cottrell; Nadine Fievet; Louise Turner; Sokhna Sow; J.-M. Dangou; Thor G. Theander; Philippe Deloron

BACKGROUND Pregnancy-associated malaria (PAM) is precipitated by the accumulation of parasites in the placental intervillous spaces and causes maternal anemia and low birth weight. In PAM, placental parasites adhere to chondroitin sulfate A (CSA) through a unique set of variant surface antigens (VSAPAM). Several studies have shown that 1 var gene, var2csa, is transcribed at high levels and expressed in CSA-binding Plasmodium falciparum parasites. METHODS Plasma levels of anti-VAR2CSA immunoglobulin G (IgG) in Senegalese women were measured during pregnancy by enzyme-linked immunosorbent assay, using 3 recombinant proteins representing 3 domains of the var2csa gene product. RESULTS The 3 recombinant proteins were specifically recognized by plasma from pregnant women but not by control plasma. A parity-dependent recognition pattern was observed with 2 of the 3 VAR2CSA antigens. A kinetic study demonstrated that a single P. falciparum infection was able to trigger a VAR2CSA-specific antibody response. Among women with infected placentas, women with high anti-VAR2CSA IgG levels at enrollment were more likely to present with a past infection than with an acute/chronic infection. CONCLUSIONS Anti-VAR2CSA IgGs are involved in clinical protection against pregnancy-associated malaria and strengthens the hope for making a VAR2CSA-based vaccine.


Molecular Microbiology | 2007

Human pregnancy-associated malaria-specific B cells target polymorphic, conformational epitopes in VAR2CSA

Lea Barfod; Nadia L. Bernasconi; Madeleine Dahlbäck; David Jarrossay; Pernille Andersen; Ali Salanti; Michael F. Ofori; Louise Turner; Mafalda Resende; Morten A. Nielsen; Thor G. Theander; Federica Sallusto; Antonio Lanzavecchia; Lars Hviid

Pregnancy‐associated malaria (PAM) is caused by Plasmodium falciparum‐infected erythrocytes (IEs) that bind to chondroitin sulphate A (CSA) in the placenta by PAM‐associated clonally variant surface antigens (VSA). Pregnancy‐specific VSA (VSAPAM), which include the PfEMP1 variant VAR2CSA, are targets of IgG‐mediated protective immunity to PAM. Here, we report an investigation of the specificity of naturally acquired immunity to PAM, using eight human monoclonal IgG1 antibodies that react exclusively with intact CSA‐adhering IEs expressing VSAPAM. Four reacted in Western blotting with high‐molecular‐weight (> 200 kDa) proteins, while seven reacted with either the DBL3‐X or the DBL5‐ε domains of VAR2CSA expressed either as Baculovirus constructs or on the surface of transfected Jurkat cells. We used a panel of recombinant antigens representing DBL3‐X domains from P. falciparum field isolates to evaluate B‐cell epitope diversity among parasite isolates, and identified the binding site of one monoclonal antibody using a chimeric DBL3‐X construct. Our findings show that there is a high‐frequency memory response to VSAPAM, indicating that VAR2CSA is a primary target of naturally acquired PAM‐specific protective immunity, and demonstrate the value of human monoclonal antibodies and conformationally intact recombinant antigens in VSA characterization.


Journal of Immunology | 2009

Sequential, Ordered Acquisition of Antibodies to Plasmodium falciparum Erythrocyte Membrane Protein 1 Domains

Gerald K. K. Cham; Louise Turner; John Lusingu; Lasse S. Vestergaard; Bruno P. Mmbando; Jonathan D. Kurtis; Anja T. R. Jensen; Ali Salanti; Thomas Lavstsen; Thor G. Theander

The binding of erythrocytes infected with mature blood stage parasites to the vascular bed is key to the pathogenesis of malignant malaria. The binding is mediated by members of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. PfEMP1s can be divided into groups, and it has previously been suggested that parasites expressing group A or B/A PfEMP1s are most pathogenic. To test the hypothesis that the first malaria infections in infants and young children are dominated by parasites expressing A and B/A PfEMP1s, we measured the plasma Ab level against 48 recombinant PfEMP1 domains of different groupings in 1342 individuals living in five African villages characterized by markedly different malaria transmission. We show that children progressively acquire a broader repertoire of anti-PfEMP1 Abs, but that the rate of expansion is governed by transmission intensity. However, independently of transmission intensity, Abs are first acquired to particular duffy binding ligand-like domains belonging to group A or B/A PfEMP1s. The results support the view that anti-PfEMP1 Ab responses effectively structure the expenditure of the repertoire of PfEMP1 maintained by the parasite. Parasites expressing certain group A and B/A PfEMP1s are responded to first by individuals with limited previous exposure, and the resulting Abs reduce the fitness and pathogenicity of these parasites during subsequent infections. This allows parasites expressing less pathogenic PFEMP1s to dominate during later infections. The identification of PfEMP1 domains expressed by parasites causing disease in infants and young children is important for development of vaccines protecting against severe malaria.

Collaboration


Dive into the Louise Turner's collaboration.

Top Co-Authors

Avatar

Thor G. Theander

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Hviid

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Salanti

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Madeleine Dahlbäck

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Morten A. Nielsen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Pamela Magistrado

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge