Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John M. Vulule is active.

Publication


Featured researches published by John M. Vulule.


Insect Molecular Biology | 2000

Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids

Hilary Ranson; B. Jensen; John M. Vulule; Xuelan Wang; Janet Hemingway; Frank H. Collins

A field trial of permethrin‐impregnated bednets and curtains was initiated in Western Kenya in 1990, and a strain of Anopheles gambiae showing reduced susceptibility to permethrin was colonized from this site in 1992. A leucine–phenylalanine substitution at position 1014 of the voltage‐gated sodium channel is associated with resistance to permethrin and DDT in many insect species, including Anopheles gambiae from West Africa. We cloned and sequenced a partial sodium channel cDNA from the Kenyan permethrin‐resistant strain and we identified an alternative substitution (leucine to serine) at the same position, which is linked to the inheritance of permethrin resistance in the F2 progeny of genetic crosses between susceptible and resistant individuals. The diagnostic polymerase chain reaction (PCR) developed by Martinez‐Torres et al . [(1998) Insect Mol Biol 7: 179–184] to detect kdr alleles in field populations of An. gambiae will not detect the Kenyan allele and hence reliance on this assay may lead to an underestimate of the prevalence of pyrethroid resistance in this species. We adapted the diagnostic PCR to detect the leucine–serine mutation and with this diagnostic we were able to demonstrate that this kdr allele was present in individuals collected from the Kenyan trial site in 1986, prior to the introduction of pyrethroid‐impregnated bednets. The An. gambiae sodium channel was physically mapped to chromosome 2L, division 20C. This position corresponds to the location of a major quantitative trait locus determining resistance to permethrin in the Kenyan strain of An. gambiae.


Malaria Journal | 2010

Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya

M. Nabie Bayoh; Derrick K Mathias; Maurice R. Odiere; Francis M. Mutuku; Luna Kamau; John E. Gimnig; John M. Vulule; William A. Hawley; Mary J. Hamel; Edward D. Walker

BackgroundHigh coverage of insecticide-treated bed nets in Asembo and low coverage in Seme, two adjacent communities in western Nyanza Province, Kenya; followed by expanded coverage of bed nets in Seme, as the Kenya national malaria programme rolled out; provided a natural experiment for quantification of changes in relative abundance of two primary malaria vectors in this holoendemic region. Both belong to the Anopheles gambiae sensu lato (s.l.) species complex, namely A. gambiae sensu stricto (s.s.) and Anopheles arabiensis. Historically, the former species was proportionately dominant in indoor resting collections of females.MethodsData of the relative abundance of adult A. gambiae s.s. and A. arabiensis sampled from inside houses were obtained from the literature from 1970 to 2002 for sites west of Kisumu, Kenya, to the region of Asembo ca. 50 km from the city. A sampling transect was established from Asembo (where bed net use was high due to presence of a managed bed net distribution programme) eastward to Seme, where no bed net programme was in place. Adults of A. gambiae s.l. were sampled from inside houses along the transect from 2003 to 2009, as were larvae from nearby aquatic habitats, providing data over a nearly 40 year period of the relative abundance of the two species. Relative proportions of A. gambiae s.s. and A. arabiensis were determined for each stage by identifying species by the polymerase chain reaction method. Household bed net ownership was measured with surveys during mosquito collections. Data of blood host choice, parity rate, and infection rate for Plasmodium falciparum in A. gambiae s.s. and A. arabiensis were obtained for a sample from Asembo and Seme from 2005.ResultsAnopheles gambiae s.s. adult females from indoor collections predominated from 1970 to 1998 (ca. 85%). Beginning in 1999, A. gambiae s.s decreased proportionately relative to A. arabiensis, then precipitously declined to rarity coincident with increased bed net ownership as national bed net distribution programmes commenced in 2004 and 2006. By 2009, A. gambiae s.s. comprised proportionately ca. 1% of indoor collections and A. arabiensis 99%. In Seme compared to Asembo in 2003, proportionately more larvae were A. gambiae s.s., larval density was higher, and more larval habitats were occupied. As bed net use rose in Seme, the proportion of A. gambiae larvae declined as well. These trends continued to 2009. Parity and malaria infection rates were lower in both species in Asembo (high bed net use) compared to Seme (low bed net use), but host choice did not vary within species in both communities (predominantly cattle for A. arabiensis, humans for A. gambiae s.s.).ConclusionsA marked decline of the A. gambiae s.s. population occurred as household ownership of bed nets rose in a region of western Kenya over a 10 year period. The increased bed net coverage likely caused a mass effect on the composition of the A. gambiae s.l. species complex, resulting in the observed proportionate increase in A. arabiensis compared to its closely related sibling species, A. gambiae s.s. These observations are important in evaluating the process of regional malaria elimination, which requires sustained vector control as a primary intervention.


Journal of Medical Entomology | 2002

Density-Dependent Development of Anopheles gambiae (Diptera: Culicidae) Larvae in Artificial Habitats

John E. Gimnig; Maurice Ombok; Samson Otieno; Michael G. Kaufman; John M. Vulule; Edward D. Walker

Abstract The growth and development of Anopheles gambiae Giles larvae were studied in artificial habitats in western Kenya. Larvae responded to increasing densities by extending their development time and by emerging as smaller adults, although survival was not significantly affected. Addition of nutrients in the form of cow dung collected near the study site had no impact on larval growth and development. Regression analysis showed that female development time increased by 0.020 d and female dry mass decreased by 0.74 μg with each additional larva. By fitting the data to the pupation window model, the estimated minimum dry mass to achieve pupation was 0.130 mg and the estimated minimum time to pupation was 5 d. The most likely food source for An. gambiae larvae was algal growth, which was significantly reduced by the presence of larvae. Bacterial densities were not significantly affected by the presence of larvae although total bacteria counts were lower at the higher densities indicating they may provide a secondary food source when algal resources are depleted. Similarly, the levels of nitrogen and phosphorus in the habitats were not significantly affected by the presence of larvae although there was evidence of decreasing nitrogen levels occurring with increasing larval densities suggesting that nitrogen may be a limiting resource in the larval environment. The data indicate that competition within the larval environment may indirectly regulate An. gambiae populations by reducing adult body size, which may in turn reduce adult survivorship and fecundity. The potential impact of density-dependent interactions among An. gambiae larvae on the transmission of Plasmodium falciparum is discussed.


The Journal of Infectious Diseases | 2015

Absence of Putative Artemisinin Resistance Mutations Among Plasmodium falciparum in Sub-Saharan Africa: A Molecular Epidemiologic Study

Steve M. Taylor; Christian M. Parobek; Derrick K. DeConti; Kassoum Kayentao; Sheick Oumar Coulibaly; Brian Greenwood; Harry Tagbor; John V. Williams; Kalifa Bojang; Fanta Njie; Meghna Desai; Simon Kariuki; Julie Gutman; Don P. Mathanga; Andreas Mårtensson; Billy Ngasala; Melissa D. Conrad; Philip J. Rosenthal; Antoinette Tshefu; Ann M. Moormann; John M. Vulule; Ogobara K. Doumbo; Feiko O ter Kuile; Steven R. Meshnick; Jeffrey A. Bailey; Jonathan J. Juliano

Plasmodium falciparum parasites that are resistant to artemisinins have been detected in Southeast Asia. Resistance is associated with several polymorphisms in the parasites K13-propeller gene. The molecular epidemiology of these artemisinin resistance genotypes in African parasite populations is unknown. We developed an assay to quantify rare polymorphisms in parasite populations that uses a pooled deep-sequencing approach to score allele frequencies, validated it by evaluating mixtures of laboratory parasite strains, and then used it to screen P. falciparum parasites from >1100 African infections collected since 2002 from 14 sites across sub-Saharan Africa. We found no mutations in African parasite populations that are associated with artemisinin resistance in Southeast Asian parasites. However, we observed 15 coding mutations, including 12 novel mutations, and limited allele sharing between parasite populations, consistent with a large reservoir of naturally occurring K13-propeller variation. Although polymorphisms associated with artemisinin resistance in P. falciparum in Southeast Asia are not prevalent in sub-Saharan Africa, numerous K13-propeller coding polymorphisms circulate in Africa. Although their distributions do not support a widespread selective sweep for an artemisinin-resistant phenotype, the impact of these mutations on artemisinin susceptibility is unknown and will require further characterization. Rapid, scalable molecular surveillance offers a useful adjunct in tracking and containing artemisinin resistance.


PLOS ONE | 2009

HIV prevalence and associated risk factors among individuals aged 13-34 years in Rural Western Kenya.

Pauli N. Amornkul; Hilde Vandenhoudt; Peter Nasokho; Frank Odhiambo; Dufton Mwaengo; Allen W. Hightower; Anne Buvé; Ambrose Misore; John M. Vulule; Charles Vitek; Judith R. Glynn; Alan E. Greenberg; Laurence Slutsker; Kevin M. De Cock

Objectives To estimate HIV prevalence and characterize risk factors among young adults in Asembo, rural western Kenya. Design Community-based cross-sectional survey. Methods From a demographic surveillance system, we selected a random sample of residents aged 13-34 years, who were contacted at home and invited to a nearby mobile study site. Consent procedures for non-emancipated minors required assent and parental consent. From October 2003 - April 2004, consenting participants were interviewed on risk behavior and tested for HIV and HSV-2. HIV voluntary counseling and testing was offered. Results Of 2606 eligible residents, 1822 (70%) enrolled. Primary reasons for refusal included not wanting blood taken, not wanting to learn HIV status, and partner/parental objection. Females comprised 53% of 1762 participants providing blood. Adjusted HIV prevalence was 15.4% overall: 20.5% among females and 10.2% among males. HIV prevalence was highest in women aged 25-29 years (36.5%) and men aged 30-34 years (41.1%). HSV-2 prevalence was 40.0% overall: 53% among females, 25.8% among males. In multivariate models stratified by gender and marital status, HIV infection was strongly associated with age, higher number of sex partners, widowhood, and HSV-2 seropositivity. Conclusions Asembo has extremely high HIV and HSV-2 prevalence, and probable high incidence, among young adults. Further research on circumstances around HIV acquisition in young women and novel prevention strategies (vaccines, microbicides, pre-exposure prophylaxis, HSV-2 prevention, etc.) are urgently needed.


BMJ | 2005

Household based treatment of drinking water with flocculant-disinfectant for preventing diarrhoea in areas with turbid source water in rural western Kenya: cluster randomised controlled trial.

John A. Crump; Peter Otieno; Laurence Slutsker; Bruce H. Keswick; Daniel H. Rosen; R. Michael Hoekstra; John M. Vulule; Stephen P. Luby

Abstract Objective To compare the effect on prevalence of diarrhoea and mortality of household based treatment of drinking water with flocculant-disinfectant, sodium hypochlorite, and standard practices in areas with turbid water source in Africa. Design Cluster randomised controlled trial over 20 weeks. Setting Family compounds, each containing several houses, in rural western Kenya. Participants 6650 people in 605 family compounds. Intervention Water treatment: flocculant-disinfectant, sodium hypochlorite, and usual practice (control). Main outcome measures Prevalence of diarrhoea and all cause mortality. Escherichia coli concentration, free residual chlorine concentration, and turbidity in household drinking water as surrogates for effectiveness of water treatment. Results In children < 2 years old, compared with those in the control compounds, the absolute difference in prevalence of diarrhoea was –25% in the flocculant-disinfectant arm (95% confidence interval –40 to –5) and –17% in the sodium hypochlorite arm (–34 to 4). In all age groups compared with control, the absolute difference in prevalence was –19% in the flocculant-disinfectant arm (–34 to –2) and –26% in the sodium hypochlorite arm (–39 to –9). There were significantly fewer deaths in the intervention compounds than in the control compounds (relative risk of death 0.58, P = 0.036). Fourteen per cent of water samples from control compounds had E coli concentrations < 1 CFU/100 ml compared with 82% in flocculant-disinfectant and 78% in sodium hypochlorite compounds. The mean turbidity of drinking water was 8 nephelometric turbidity units (NTU) in flocculant-disinfectant households, compared with 55 NTU in the two other compounds (P < 0.001). Conclusions In areas of turbid water, flocculant-disinfectant was associated with a significant reduction in diarrhoea among children < 2 years. This health benefit, combined with a significant reduction in turbidity, suggests that the flocculant-disinfectant is well suited to areas with highly contaminated and turbid water.


The Journal of Infectious Diseases | 2006

Antifolate Resistance in Plasmodium falciparum: Multiple Origins and Identification of Novel dhfr Alleles

Andrea M. McCollum; Amanda Poe; Mary J. Hamel; Curtis S. Huber; Zhiyong Zhou; Ya Ping Shi; Peter Ouma; John M. Vulule; Peter B. Bloland; Laurence Slutsker; John W. Barnwell; Venkatachalam Udhayakumar; Ananias A. Escalante

BACKGROUND Sulfadoxine-pyrimethamine has been widely used as first-line therapy for uncomplicated malaria throughout sub-Saharan Africa. Recent studies conducted in Asia and Africa suggest the triple-mutant dhfr genotype (51I/59R/108N) may have been generated as a single event in Southeast Asia, with subsequent spread of the single lineage to the African continent, but this hypothesis needs further validation. METHODS Direct sequencing of polymerase chain reaction (PCR) products, pyrosequencing, and cloning of PCR products were utilized to identify mutations in dhfr. To investigate the evolutionary history of dhfr alleles, we assayed microsatellite loci flanking dhfr along chromosome 4. RESULTS A total of 15 of 479 samples from western Kenya showed the presence of I164L, in 5 different genotypes. We document C50R in 2 of our samples. Using microsatellite markers, we show 2 haplotypes for both the 51I/108N/164L and 51I/59R/108N/164L genotypes. Our results also show multiple lineages for the triple-mutant dhfr genotype in Africa. CONCLUSIONS These findings highlight the importance of local characterization of alleles before molecular surveillance of drug-resistant alleles is considered in different endemic settings and populations.


The Journal of Infectious Diseases | 2014

Absence of putative Plasmodium falciparum artemisinin resistance mutations in sub-Saharan Africa: A molecular epidemiologic study

Steve M. Taylor; Christian M. Parobek; Derrick K. DeConti; Kassoum Kayentao; Sheick Oumar Coulibaly; Brian Greenwood; Harry Tagbor; John V. Williams; Kalifa Bojang; Fanta Njie; Meghna Desai; Simon Kariuki; Julie Gutman; Don P. Mathanga; Andreas Mårtensson; Billy Ngasala; Melissa D. Conrad; Philip J. Rosenthal; Antoinette Tshefu; Ann M. Moormann; John M. Vulule; Ogobara K. Doumbo; Feiko O ter Kuile; Steven R. Meshnick; Jeffrey A. Bailey; Jonathan J. Juliano

Plasmodium falciparum parasites that are resistant to artemisinins have been detected in Southeast Asia. Resistance is associated with several polymorphisms in the parasites K13-propeller gene. The molecular epidemiology of these artemisinin resistance genotypes in African parasite populations is unknown. We developed an assay to quantify rare polymorphisms in parasite populations that uses a pooled deep-sequencing approach to score allele frequencies, validated it by evaluating mixtures of laboratory parasite strains, and then used it to screen P. falciparum parasites from >1100 African infections collected since 2002 from 14 sites across sub-Saharan Africa. We found no mutations in African parasite populations that are associated with artemisinin resistance in Southeast Asian parasites. However, we observed 15 coding mutations, including 12 novel mutations, and limited allele sharing between parasite populations, consistent with a large reservoir of naturally occurring K13-propeller variation. Although polymorphisms associated with artemisinin resistance in P. falciparum in Southeast Asia are not prevalent in sub-Saharan Africa, numerous K13-propeller coding polymorphisms circulate in Africa. Although their distributions do not support a widespread selective sweep for an artemisinin-resistant phenotype, the impact of these mutations on artemisinin susceptibility is unknown and will require further characterization. Rapid, scalable molecular surveillance offers a useful adjunct in tracking and containing artemisinin resistance.


Bulletin of The World Health Organization | 2000

Molecular entomology and prospects for malaria control.

Frank H. Collins; Luna Kamau; Hilary Ranson; John M. Vulule

During the past decade, the techniques of molecular and cell biology have been embraced by many scientists doing research on anopheline vectors of malaria parasites. Some of the most important research advances in molecular entomology have concerned the development of sophisticated molecular tools for procedures such as genetic and physical mapping and germ line transformation. Major advances have also been made in the study of specific biological processes such as insect defence against pathogens and the manner in which malaria parasites and their anopheline hosts interact during sporogony. One of the most important highlights of this research trend has been the emergence during the past year of a formal international Anopheles gambiae genome project, which at present includes investigators in several laboratories in Europe and the USA. Although much of this molecular research is directed towards the development of malaria control strategies that are probably many years from implementation, there are some important areas of molecular entomology that may have a more near-term impact on malaria control. We highlight developments over the past decade in three such areas that we believe can make important contributions to the development of near-term malaria control strategies. These areas are anopheline species identification, the detection and monitoring of insecticide susceptibility/resistance in wild anopheline populations and the determination of the genetic structure of anopheline populations.


Malaria Journal | 2011

Spatial and temporal variation in the kdr allele L1014S in Anopheles gambiae s.s. and phenotypic variability in susceptibility to insecticides in Western Kenya

Derrick K Mathias; Eric Ochomo; Francis Atieli; Maurice Ombok; M. Nabie Bayoh; George Olang; Damaris Muhia; Luna Kamau; John M. Vulule; Mary J. Hamel; William A. Hawley; Edward D. Walker; John E. Gimnig

BackgroundMalaria vector control in Africa depends upon effective insecticides in bed nets and indoor residual sprays. This study investigated the extent of insecticide resistance in Anopheles gambiae s.l., Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya where ownership of insecticide-treated bed nets has risen steadily from the late 1990s to 2010. Temporal and spatial variation in the frequency of a knock down resistance (kdr) allele in A. gambiae s.s. was quantified, as was variation in phenotypic resistance among geographic populations of A. gambiae s.l.MethodsTo investigate temporal variation in kdr frequency, individual specimens of A. gambiae s.s. from two sentinel sites were genotyped using RT-PCR from 1996-2010. Spatial variation in kdr frequency, species composition, and resistance status were investigated in additional populations of A. gambiae s.l. sampled in western Kenya in 2009 and 2010. Specimens were genotyped for kdr as above and identified to species via conventional PCR. Field-collected larvae were reared to adulthood and tested for insecticide resistance using WHO bioassays.ResultsAnopheles gambiae s.s. showed a dramatic increase in kdr frequency from 1996 - 2010, coincident with the scale up of insecticide-treated nets. By 2009-2010, the kdr L1014S allele was nearly fixed in the A. gambiae s.s. population, but was absent in A. arabiensis. Near Lake Victoria, A. arabiensis was dominant in samples, while at sites north of the lake A. gambiae s.s was more common but declined relative to A. arabiensis from 2009 to 2010. Bioassays demonstrated that A. gambiae s.s. had moderate phenotypic levels of resistance to DDT, permethrin and deltamethrin while A. arabiensis was susceptible to all insecticides tested.ConclusionsThe kdr L1014S allele has approached fixation in A. gambiae s.s. populations of western Kenya, and these same populations exhibit varying degrees of phenotypic resistance to DDT and pyrethroid insecticides. The near absence of A. gambiae s.s. from populations along the lakeshore and the apparent decline in other populations suggest that insecticide-treated nets remain effective against this mosquito despite the increase in kdr allele frequency. The persistence of A. arabiensis, despite little or no detectable insecticide resistance, is likely due to behavioural traits such as outdoor feeding and/or feeding on non-human hosts by which this species avoids interaction with insecticide-treated nets.

Collaboration


Dive into the John M. Vulule's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Gimnig

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Bernard L. Nahlen

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Laurence Slutsker

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kayla F. Laserson

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Mary J. Hamel

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Ann M. Moormann

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge