Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Marlett is active.

Publication


Featured researches published by John Marlett.


Nature | 2012

Global landscape of HIV-human protein complexes

Stefanie Jäger; Peter Cimermancic; Natali Gulbahce; Jeffrey R. Johnson; Kathryn E. McGovern; Starlynn C. Clarke; Michael Shales; Gaelle Mercenne; Lars Pache; Kathy H. Li; Hilda Hernandez; Gwendolyn M. Jang; Shoshannah L. Roth; Eyal Akiva; John Marlett; Melanie Stephens; Iván D’Orso; Jason Fernandes; Marie Fahey; Cathal Sean Mahon; Anthony J. O’Donoghue; Aleksandar Todorovic; John H. Morris; David A. Maltby; Tom Alber; Gerard Cagney; Frederic D. Bushman; John A. T. Young; Sumit K. Chanda; Wesley I. Sundquist

Human immunodeficiency virus (HIV) has a small genome and therefore relies heavily on the host cellular machinery to replicate. Identifying which host proteins and complexes come into physical contact with the viral proteins is crucial for a comprehensive understanding of how HIV rewires the host’s cellular machinery during the course of infection. Here we report the use of affinity tagging and purification mass spectrometry to determine systematically the physical interactions of all 18 HIV-1 proteins and polyproteins with host proteins in two different human cell lines (HEK293 and Jurkat). Using a quantitative scoring system that we call MiST, we identified with high confidence 497 HIV–human protein–protein interactions involving 435 individual human proteins, with ∼40% of the interactions being identified in both cell types. We found that the host proteins hijacked by HIV, especially those found interacting in both cell types, are highly conserved across primates. We uncovered a number of host complexes targeted by viral proteins, including the finding that HIV protease cleaves eIF3d, a subunit of eukaryotic translation initiation factor 3. This host protein is one of eleven identified in this analysis that act to inhibit HIV replication. This data set facilitates a more comprehensive and detailed understanding of how the host machinery is manipulated during the course of HIV infection.


Nature Communications | 2015

Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells

Hsin-Kai Liao; Ying Gu; Arturo Diaz; John Marlett; Yuta Takahashi; Mo Li; Keiichiro Suzuki; Ruo Xu; Tomoaki Hishida; Chan-Jung Chang; Concepcion Rodriguez Esteban; John A. T. Young; Juan Carlos Izpisua Belmonte

To combat hostile viruses, bacteria and archaea have evolved a unique antiviral defense system composed of clustered regularly interspaced short palindromic repeats (CRISPRs), together with CRISPR-associated genes (Cas). The CRISPR/Cas9 system develops an adaptive immune resistance to foreign plasmids and viruses by creating site-specific DNA double-stranded breaks (DSBs). Here we adapt the CRISPR/Cas9 system to human cells for intracellular defense against foreign DNA and viruses. Using HIV-1 infection as a model, our results demonstrate that the CRISPR/Cas9 system disrupts latently integrated viral genome and provides long-term adaptive defense against new viral infection, expression and replication in human cells. We show that engineered human-induced pluripotent stem cells stably expressing HIV-targeted CRISPR/Cas9 can be efficiently differentiated into HIV reservoir cell types and maintain their resistance to HIV-1 challenge. These results unveil the potential of the CRISPR/Cas9 system as a new therapeutic strategy against viral infections.


The Journal of Infectious Diseases | 2005

A Soluble Receptor Decoy Protects Rats against Anthrax Lethal Toxin Challenge

Heather M. Scobie; Diane Thomas; John Marlett; Giuseppe Destito; Darran J. Wigelsworth; R. John Collier; John A. T. Young; Marianne Manchester

Successful postexposure treatment for inhalation anthrax is thought to include neutralization of anthrax toxin. The soluble anthrax toxin receptor/tumor endothelial marker 8 and capillary morphogenesis protein 2 (sATR/TEM8 and sCMG2, respectively) receptor decoys bind to anthrax toxin protective antigen (PA) and compete with cellular receptors for binding. Here, we show that, in a tissue-culture model of intoxication, sCMG2 is a 11.4-fold more potent antitoxin than sATR/TEM8 and that this increased activity corresponds to an approximately 1000-fold higher PA-binding affinity. Stoichiometric concentrations of sCMG2 protect rats against lethal toxin challenge, making sCMG2 one of the most effective anthrax antitoxins described to date.


PLOS Pathogens | 2007

A Viral Nanoparticle with Dual Function as an Anthrax Antitoxin and Vaccine

Darly J. Manayani; Diane Thomas; Kelly A. Dryden; Vijay S. Reddy; Marc E Siladi; John Marlett; G. Jonah A. Rainey; Michael E. Pique; Heather M. Scobie; Mark Yeager; John A. T. Young; Marianne Manchester; Anette Schneemann

The recent use of Bacillus anthracis as a bioweapon has stimulated the search for novel antitoxins and vaccines that act rapidly and with minimal adverse effects. B. anthracis produces an AB-type toxin composed of the receptor-binding moiety protective antigen (PA) and the enzymatic moieties edema factor and lethal factor. PA is a key target for both antitoxin and vaccine development. We used the icosahedral insect virus Flock House virus as a platform to display 180 copies of the high affinity, PA-binding von Willebrand A domain of the ANTXR2 cellular receptor. The chimeric virus-like particles (VLPs) correctly displayed the receptor von Willebrand A domain on their surface and inhibited lethal toxin action in in vitro and in vivo models of anthrax intoxication. Moreover, VLPs complexed with PA elicited a potent toxin-neutralizing antibody response that protected rats from anthrax lethal toxin challenge after a single immunization without adjuvant. This recombinant VLP platform represents a novel and highly effective, dually-acting reagent for treatment and protection against anthrax.


PLOS Pathogens | 2006

Anthrax Toxin Receptor 2-Dependent Lethal Toxin Killing In Vivo

Heather M. Scobie; Darran J. Wigelsworth; John Marlett; Diane Thomas; G. Jonah A. Rainey; D. Borden Lacy; Marianne Manchester; R. John Collier; John A. T. Young

Anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2) have a related integrin-like inserted (I) domain which interacts with a metal cation that is coordinated by residue D683 of the protective antigen (PA) subunit of anthrax toxin. The receptor-bound metal ion and PA residue D683 are critical for ANTXR1-PA binding. Since PA can bind to ANTXR2 with reduced affinity in the absence of metal ions, we reasoned that D683 mutant forms of PA might specifically interact with ANTXR2. We show here that this is the case. The differential ability of ANTXR1 and ANTXR2 to bind D683 mutant PA proteins was mapped to nonconserved receptor residues at the binding interface with PA domain 2. Moreover, a D683K mutant form of PA that bound specifically to human and rat ANTXR2 mediated killing of rats by anthrax lethal toxin, providing strong evidence for the physiological importance of ANTXR2 in anthrax disease pathogenesis.


PLOS ONE | 2007

Anthrax Toxin Receptor 2 Determinants that Dictate the pH Threshold of Toxin Pore Formation

Heather M. Scobie; John Marlett; G. Jonah A. Rainey; D. Borden Lacy; R. John Collier; John A. T. Young

The anthrax toxin receptors, ANTXR1 and ANTXR2, act as molecular clamps to prevent the protective antigen (PA) toxin subunit from forming pores until exposure to low pH. PA forms pores at pH ∼6.0 or below when it is bound to ANTXR1, but only at pH ∼5.0 or below when it is bound to ANTXR2. Here, structure-based mutagenesis was used to identify non-conserved ANTXR2 residues responsible for this striking 1.0 pH unit difference in pH threshold. Residues conserved between ANTXR2 and ANTXR1 that influence the ANTXR2-associated pH threshold of pore formation were also identified. All of these residues contact either PA domain 2 or the neighboring edge of PA domain 4. These results provide genetic evidence for receptor release of these regions of PA as being necessary for the protein rearrangements that accompany anthrax toxin pore formation.


PLOS Pathogens | 2011

A receptor-based switch that regulates anthrax toxin pore formation.

Rosemarie M. Pilpa; Monika Bayrhuber; John Marlett; Roland Riek; John A. T. Young

Cellular receptors can act as molecular switches, regulating the sensitivity of microbial proteins to conformational changes that promote cellular entry. The activities of these receptor-based switches are only partially understood. In this paper, we sought to understand the mechanism that underlies the activity of the ANTXR2 anthrax toxin receptor-based switch that binds to domains 2 and 4 of the protective antigen (PA) toxin subunit. Receptor-binding restricts structural changes within the heptameric PA prepore that are required for pore conversion to an acidic endosomal compartment. The transfer cross-saturation (TCS) NMR approach was used to monitor changes in the heptameric PA-receptor contacts at different steps during prepore-to-pore conversion. These studies demonstrated that receptor contact with PA domain 2 is weakened prior to pore conversion, defining a novel intermediate in this pathway. Importantly, ANTXR2 remained bound to PA domain 4 following pore conversion, suggesting that the bound receptor might influence the structure and/or function of the newly formed pore. These studies provide new insights into the function of a receptor-based molecular switch that controls anthrax toxin entry into cells.


Antimicrobial Agents and Chemotherapy | 2009

Efficient Neutralization of Antibody-Resistant Forms of Anthrax Toxin by a Soluble Receptor Decoy Inhibitor

Shilpi Sharma; Diane Thomas; John Marlett; Marianne Manchester; John A. T. Young

ABSTRACT A soluble receptor decoy inhibitor (RDI), comprised of the extracellular I domain of ANTXR2, is a candidate anthrax therapeutic. Here we show that RDI can effectively neutralize altered forms of the protective antigen toxin subunit that are resistant to 14B7 monoclonal antibody neutralization. These data highlight the potential of RDI to act as an adjunct to existing antibody-based therapies and indicate that inhibitors based on RDI might be useful as a stand-alone treatment against specifically engineered strains of Bacillus anthracis.


Cell Host & Microbe | 2015

BIRC2/cIAP1 Is a Negative Regulator of HIV-1 Transcription and Can Be Targeted by Smac Mimetics to Promote Reversal of Viral Latency

Lars Pache; Miriam S. Dutra; Adam M. Spivak; John Marlett; Jeffrey P. Murry; Young Hwang; Ana M. Maestre; Lara Manganaro; Mitchell Vamos; Peter Teriete; Laura J. Martins; Renate König; Viviana Simon; Alberto Bosque; Ana Fernandez-Sesma; Nicholas Dp Cosford; Frederic D. Bushman; John A. T. Young; Vicente Planelles; Sumit K. Chanda

Combination antiretroviral therapy (ART) is able to suppress HIV-1 replication to undetectable levels. However, the persistence of latent viral reservoirs allows for a rebound of viral load upon cessation of therapy. Thus, therapeutic strategies to eradicate the viral latent reservoir are critically needed. Employing a targeted RNAi screen, we identified the ubiquitin ligase BIRC2 (cIAP1), a repressor of the noncanonical NF-κB pathway, as a potent negative regulator of LTR-dependent HIV-1 transcription. Depletion of BIRC2 through treatment with small molecule antagonists known as Smac mimetics enhanced HIV-1 transcription, leading to a reversal of latency in a JLat latency model system. Critically, treatment of resting CD4+ T cells isolated from ART-suppressed patients with the histone deacetylase inhibitor (HDACi) panobinostat together with Smac mimetics resulted in synergistic activation of the latent reservoir. These data implicate Smac mimetics as useful agents for shock-and-kill strategies to eliminate the latent HIV reservoir.


Journal of Virology | 2014

Tumor Suppressor Cylindromatosis (CYLD) Controls HIV Transcription in an NF-κB-Dependent Manner

Lara Manganaro; Lars Pache; Tobias Herrmann; John Marlett; Young Hwang; Jeffrey P. Murry; Lisa Miorin; Adrian T. Ting; Renate König; Adolfo García-Sastre; Frederic D. Bushman; Sumit K. Chanda; John A. T. Young; Ana Fernandez-Sesma; Viviana Simon

ABSTRACT Characterizing the cellular factors that play a role in the HIV replication cycle is fundamental to fully understanding mechanisms of viral replication and pathogenesis. Whole-genome small interfering RNA (siRNA) screens have identified positive and negative regulators of HIV replication, providing starting points for investigating new cellular factors. We report here that silencing of the deubiquitinase cylindromatosis protein (CYLD), increases HIV infection by enhancing HIV long terminal repeat (LTR)-driven transcription via the NF-κB pathway. CYLD is highly expressed in CD4+ T lymphocytes, monocyte-derived macrophages, and dendritic cells. We found that CYLD silencing increases HIV replication in T cell lines. We confirmed the positive role of CYLD silencing in HIV infection in primary human CD4+ T cells, in which CYLD protein was partially processed upon activation. Lastly, Jurkat T cells latently infected with HIV (JLat cells) were more responsive to phorbol 12-myristate 13-acetate (PMA) reactivation in the absence of CYLD, indicating that CYLD activity could play a role in HIV reactivation from latency. In summary, we show that CYLD acts as a potent negative regulator of HIV mRNA expression by specifically inhibiting NF-κB-driven transcription. These findings suggest a function for this protein in modulating productive viral replication as well as in viral reactivation. IMPORTANCE HIV transcription is regulated by a number of host cell factors. Here we report that silencing of the lysine 63 deubiquitinase CYLD increases HIV transcription in an NF-κB-dependent manner. We show that CYLD is expressed in HIV target cells and that its silencing increases HIV infection in transformed T cell lines as well as primary CD4+ T cells. Similarly, reactivation of latent provirus was facilitated in the absence of CYLD. These data suggest that CYLD, which is highly expressed in CD4+ T cells, can control HIV transcription in productive infection as well as during reactivation from latency.

Collaboration


Dive into the John Marlett's collaboration.

Top Co-Authors

Avatar

John A. T. Young

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Diane Thomas

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Heather M. Scobie

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Jonah A. Rainey

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Fernandez-Sesma

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge