Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Fernandez-Sesma is active.

Publication


Featured researches published by Ana Fernandez-Sesma.


Journal of Virology | 2006

Influenza Virus Evades Innate and Adaptive Immunity via the NS1 Protein

Ana Fernandez-Sesma; Svetlana Marukian; Barbara J. Ebersole; Dorothy Kaminski; Man Seong Park; Tony Yuen; Stuart C. Sealfon; Adolfo García-Sastre; Thomas M. Moran

ABSTRACT Both antibodies and T cells contribute to immunity against influenza virus infection. However, the generation of strong Th1 immunity is crucial for viral clearance. Interestingly, we found that human dendritic cells (DCs) infected with influenza A virus have lower allospecific Th1-cell stimulatory abilities than DCs activated by other stimuli, such as lipopolysaccharide and Newcastle disease virus infection. This weak stimulatory activity correlates with a suboptimal maturation of the DCs following infection with influenza A virus. We next investigated whether the influenza A virus NS1 protein could be responsible for the low levels of DC maturation after influenza virus infection. The NS1 protein is an important virulence factor associated with the suppression of innate immunity via the inhibition of type I interferon (IFN) production in infected cells. Using recombinant influenza and Newcastle disease viruses, with or without the NS1 gene from influenza virus, we found that the induction of a genetic program underlying DC maturation, migration, and T-cell stimulatory activity is specifically suppressed by the expression of the NS1 protein. Among the genes affected by NS1 are those coding for macrophage inflammatory protein 1β, interleukin-12 p35 (IL-12 p35), IL-23 p19, RANTES, IL-8, IFN-α/β, and CCR7. These results indicate that the influenza A virus NS1 protein is a bifunctional viral immunosuppressor which inhibits innate immunity by preventing type I IFN release and inhibits adaptive immunity by attenuating human DC maturation and the capacity of DCs to induce T-cell responses. Our observations also support the potential use of NS1 mutant influenza viruses as live attenuated influenza virus vaccines.


Journal of Immunology | 2000

Type I IFN Modulates Innate and Specific Antiviral Immunity

Joan E. Durbin; Ana Fernandez-Sesma; Chien-Kuo Lee; T. Dharma Rao; Alan B. Frey; Thomas M. Moran; Stanislav Vukmanovic; Adolfo García-Sastre; David E. Levy

IFNs protect from virus infection by inducing an antiviral state and by modulating the immune response. Using mice deficient in multiple aspects of IFN signaling, we found that type I and type II IFN play distinct although complementing roles in the resolution of influenza viral disease. Both types of IFN influenced the profile of cytokines produced by T lymphocytes, with a significant bias toward Th2 differentiation occurring in the absence of responsiveness to either IFN. However, although a Th1 bias produced through inhibition of Th2 differentiation by IFN-γ was not required to resolve infection, loss of type I IFN responsiveness led to exacerbated disease pathology characterized by granulocytic pulmonary inflammatory infiltrates. Responsiveness to type I IFN did not influence the generation of virus-specific cytotoxic lymphocytes or the rate of viral clearance, but induction of IL-10 and IL-15 in infected lungs through a type I IFN-dependent pathway correlated with a protective response to virus. Combined loss of both IFN pathways led to a severely polarized proinflammatory immune response and exacerbated disease. These results reveal an unexpected role for type I IFN in coordinating the host response to viral infection and controlling inflammation in the absence of a direct effect on virus replication.


PLOS Pathogens | 2012

DENV Inhibits Type I IFN Production in Infected Cells by Cleaving Human STING

Sebastian Aguirre; Ana M. Maestre; Sarah Pagni; Jenish R. Patel; Timothy Savage; Delia Gutman; Kevin Maringer; Dabeiba Bernal-Rubio; Reed S. Shabman; Viviana Simon; Juan R. Rodriguez-Madoz; Lubbertus C. F. Mulder; Glen N. Barber; Ana Fernandez-Sesma

Dengue virus (DENV) is a pathogen with a high impact on human health. It replicates in a wide range of cells involved in the immune response. To efficiently infect humans, DENV must evade or inhibit fundamental elements of the innate immune system, namely the type I interferon response. DENV circumvents the host immune response by expressing proteins that antagonize the cellular innate immunity. We have recently documented the inhibition of type I IFN production by the proteolytic activity of DENV NS2B3 protease complex in human monocyte derived dendritic cells (MDDCs). In the present report we identify the human adaptor molecule STING as a target of the NS2B3 protease complex. We characterize the mechanism of inhibition of type I IFN production in primary human MDDCs by this viral factor. Using different human and mouse primary cells lacking STING, we show enhanced DENV replication. Conversely, mutated versions of STING that cannot be cleaved by the DENV NS2B3 protease induced higher levels of type I IFN after infection with DENV. Additionally, we show that DENV NS2B3 is not able to degrade the mouse version of STING, a phenomenon that severely restricts the replication of DENV in mouse cells, suggesting that STING plays a key role in the inhibition of DENV infection and spread in mice.


PLOS Pathogens | 2011

SAMHD1-Deficient CD14+ Cells from Individuals with Aicardi-Goutieres Syndrome Are Highly Susceptible to HIV-1 Infection

André Berger; Andreas F. R. Sommer; Jenny Zwarg; Matthias Hamdorf; Karin Welzel; Nicole Esly; Sylvia Panitz; Andreas Reuter; Irene Ramos; Asavari Jatiani; Lubbertus C. F. Mulder; Ana Fernandez-Sesma; Frank Rutsch; Viviana Simon; Renate König; Egbert Flory

Myeloid blood cells are largely resistant to infection with human immunodeficiency virus type 1 (HIV-1). Recently, it was reported that Vpx from HIV-2/SIVsm facilitates infection of these cells by counteracting the host restriction factor SAMHD1. Here, we independently confirmed that Vpx interacts with SAMHD1 and targets it for ubiquitin-mediated degradation. We found that Vpx-mediated SAMHD1 degradation rendered primary monocytes highly susceptible to HIV-1 infection; Vpx with a T17A mutation, defective for SAMHD1 binding and degradation, did not show this activity. Several single nucleotide polymorphisms in the SAMHD1 gene have been associated with Aicardi-Goutières syndrome (AGS), a very rare and severe autoimmune disease. Primary peripheral blood mononuclear cells (PBMC) from AGS patients homozygous for a nonsense mutation in SAMHD1 (R164X) lacked endogenous SAMHD1 expression and support HIV-1 replication in the absence of exogenous activation. Our results indicate that within PBMC from AGS patients, CD14+ cells were the subpopulation susceptible to HIV-1 infection, whereas cells from healthy donors did not support infection. The monocytic lineage of the infected SAMHD1 -/- cells, in conjunction with mostly undetectable levels of cytokines, chemokines and type I interferon measured prior to infection, indicate that aberrant cellular activation is not the cause for the observed phenotype. Taken together, we propose that SAMHD1 protects primary CD14+ monocytes from HIV-1 infection confirming SAMHD1 as a potent lentiviral restriction factor.


Immunity | 2013

The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors

Gijs A. Versteeg; Ricardo Rajsbaum; Maria Teresa Sánchez-Aparicio; Ana M. Maestre; Julio Valdiviezo; Mude Shi; Kyung Soo Inn; Ana Fernandez-Sesma; Jae Jung; Adolfo García-Sastre

Innate immunity conferred by the type I interferon is critical for antiviral defense. To date only a limited number of tripartite motif (TRIM) proteins have been implicated in modulation of innate immunity and anti-microbial activity. Here we report the complementary DNA cloning and systematic analysis of all known 75 human TRIMs. We demonstrate that roughly half of the 75 TRIM-family members enhanced the innate immune response and that they do this at multiple levels in signaling pathways. Moreover, messenger RNA levels and localization of most of these TRIMs were found to be altered during viral infection, suggesting that their regulatory activities are highly controlled at both pre- and posttranscriptional levels. Taken together, our data demonstrate a very considerable dedication of this large protein family to the positive regulation of the antiviral response, which supports the notion that this family of proteins evolved as a component of innate immunity.


PLOS Pathogens | 2011

The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein.

Zsuzsanna T. Varga; Irene Ramos; Rong Hai; Mirco Schmolke; Adolfo García-Sastre; Ana Fernandez-Sesma; Peter Palese

PB1-F2 is a 90 amino acid protein that is expressed from the +1 open reading frame in the PB1 gene of some influenza A viruses and has been shown to contribute to viral pathogenicity. Notably, a serine at position 66 (66S) in PB1-F2 is known to increase virulence compared to an isogenic virus with an asparagine (66N) at this position. Recently, we found that an influenza virus expressing PB1-F2 N66S suppresses interferon (IFN)-stimulated genes in mice. To characterize this phenomenon, we employed several in vitro assays. Overexpression of the A/Puerto Rico/8/1934 (PR8) PB1-F2 protein in 293T cells decreased RIG-I mediated activation of an IFN-β reporter and secretion of IFN as determined by bioassay. Of note, the PB1-F2 N66S protein showed enhanced IFN antagonism activity compared to PB1-F2 wildtype. Similar observations were found in the context of viral infection with a PR8 PB1-F2 N66S virus. To understand the relationship between NS1, a previously described influenza virus protein involved in suppression of IFN synthesis, and PB1-F2, we investigated the induction of IFN when NS1 and PB1-F2 were co-expressed in an in vitro transfection system. In this assay we found that PB1-F2 N66S further reduced IFN induction in the presence of NS1. By inducing the IFN-β reporter at different levels in the signaling cascade, we found that PB1-F2 inhibited IFN production at the level of the mitochondrial antiviral signaling protein (MAVS). Furthermore, immunofluorescence studies revealed that PB1-F2 co-localizes with MAVS. In summary, we have characterized the anti-interferon function of PB1-F2 and we suggest that this activity contributes to the enhanced pathogenicity seen with PB1-F2 N66S- expressing influenza viruses.


The Journal of Infectious Diseases | 1999

Th2 Responses to Inactivated Influenza Virus Can Be Converted to Th1 Responses and Facilitate Recovery from Heterosubtypic Virus Infection

Thomas M. Moran; Helen Park; Ana Fernandez-Sesma; Jerome L. Schulman

Immunization with live influenza virus expands Th1 memory cells and facilitates more rapid recovery after heterosubtypic virus challenge. Immunization with inactivated virus generates a Th2 response and does not lead to heterosubtypic immunity. Creation of a Th1 priming environment by the inclusion of interleukin (IL)-12 with antibodies to IL-4 converted the response against inactivated virus to a Th1 response that was able to facilitate virus clearance upon heterosubtypic virus challenge. Evaluation of memory responses of mice immunized by the various protocols demonstrated that the type of immunization imprints T cell memory, dictating the nature of the response to subsequent infection. After live virus challenge, expansion of Th1 cells seems to facilitate the generation of cytotoxic T lymphocytes from naïve precursors. This latter finding may be the mechanism by which inactivated virus immunization in a Th1 cytokine context mediates heterosubtypic immunity.


Journal of Virology | 2006

Protection against Respiratory Syncytial Virus by a Recombinant Newcastle Disease Virus Vector

Luis Martínez-Sobrido; Negin Gitiban; Ana Fernandez-Sesma; Jérôme Cros; Sara E. Mertz; Nancy A. Jewell; Sue Hammond; Emilio Flaño; Russell K. Durbin; Adolfo García-Sastre; Joan E. Durbin

ABSTRACT Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract disease in infants and the elderly, but no safe and effective RSV vaccine is yet available. For reasons that are not well understood, RSV is only weakly immunogenic, and reinfection occurs throughout life. This has complicated the search for an effective live attenuated viral vaccine, and past trials with inactivated virus preparations have led to enhanced immunopathology following natural infection. We have tested the hypothesis that weak stimulation of innate immunity by RSV correlates with ineffective adaptive responses by asking whether expression of the fusion glycoprotein of RSV by Newcastle disease virus (NDV) would stimulate a more robust immune response to RSV than primary RSV infection. NDV is a potent inducer of both alpha/beta interferon (IFN-α/β) production and dendritic cell maturation, while RSV is not. When a recombinant NDV expressing the RSV fusion glycoprotein was administered to BALB/c mice, they were protected from RSV challenge, and this protection correlated with a robust anti-F CD8+ T-cell response. The effectiveness of this vaccine construct reflects the differential abilities of NDV and RSV to promote dendritic cell maturation and is retained even in the absence of a functional IFN-α/β receptor.


Journal of Virology | 2010

Inhibition of the Type I Interferon Response in Human Dendritic Cells by Dengue Virus Infection Requires a Catalytically Active NS2B3 Complex

Juan R. Rodriguez-Madoz; Alan Belicha-Villanueva; Dabeiba Bernal-Rubio; Joseph Ashour; Juan Ayllon; Ana Fernandez-Sesma

ABSTRACT Dengue virus (DENV) is the most prevalent arthropod-borne human virus, able to infect and replicate in human dendritic cells (DCs), inducing their activation and the production of proinflammatory cytokines. However, DENV can successfully evade the immune response in order to produce disease in humans. Several mechanisms of immune evasion have been suggested for DENV, most of them involving interference with type I interferon (IFN) signaling. We recently reported that DENV infection of human DCs does not induce type I IFN production by those infected DCs, impairing their ability to prime naive T cells toward Th1 immunity. In this article, we report that DENV also reduces the ability of DCs to produce type I IFN in response to several inducers, such as infection with other viruses or exposure to Toll-like receptor (TLR) ligands, indicating that DENV antagonizes the type I IFN production pathway in human DCs. DENV-infected human DCs showed a reduced type I IFN response to Newcastle disease virus (NDV), Sendai virus (SeV), and Semliki Forest virus (SFV) infection and to the TLR3 agonist poly(I:C). This inhibitory effect is DENV dose dependent, requires DENV replication, and takes place in DENV-infected DCs as early as 2 h after infection. Expressing individual proteins of DENV in the presence of an IFN-α/β production inducer reveals that a catalytically active viral protease complex is required to reduce type I IFN production significantly. These results provide a new mechanism by which DENV evades the immune system in humans.


Journal of Virology | 2010

Dengue Virus Inhibits the Production of Type I Interferon in Primary Human Dendritic Cells.

Juan R. Rodriguez-Madoz; Dabeiba Bernal-Rubio; Dorota Kaminski; Kelley Boyd; Ana Fernandez-Sesma

ABSTRACT Dengue virus (DENV) infects human immune cells in vitro and likely infects dendritic cells (DCs) in vivo. DENV-2 productive infection induces activation and release of high levels of chemokines and proinflammatory cytokines in monocyte-derived DCs (moDCs), with the notable exception of alpha/beta interferon (IFN-α/β). Interestingly, DENV-2-infected moDCs fail to prime T cells, most likely due to the lack of IFN-α/β released by moDCs, since this effect was reversed by addition of exogenous IFN-β. Together, our data show that inhibition of IFN-α/β production by DENV in primary human moDCs is a novel mechanism of immune evasion.

Collaboration


Dive into the Ana Fernandez-Sesma's collaboration.

Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ana M. Maestre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Thomas M. Moran

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Irene Ramos

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Dabeiba Bernal-Rubio

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Viviana Simon

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Lubbertus C. F. Mulder

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Sebastian Aguirre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Lara Manganaro

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Alan Belicha-Villanueva

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge