John Methven
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John Methven.
Journal of Geophysical Research | 2007
Elsa Real; Kathy S. Law; Bernadett Weinzierl; Monika Fiebig; Andreas Petzold; Oliver Wild; John Methven; S. R. Arnold; Andreas Stohl; Heide Huntrieser; Anke Roiger; Hans Schlager; D. Stewart; M. Avery; G. W. Sachse; Edward V. Browell; Richard A. Ferrare; D. R. Blake
[1] A case of long-range transport of a biomass burning plume from Alaska to Europe is analyzed using a Lagrangian approach. This plume was sampled several times in the free troposphere over North America, the North Atlantic and Europe by three different aircraft during the IGAC Lagrangian 2K4 experiment which was part of the ICARTT/ ITOP measurement intensive in summer 2004. Measurements in the plume showed enhanced values of CO, VOCs and NOy, mainly in form of PAN. Observed O-3 levels increased by 17 ppbv over 5 days. A photochemical trajectory model, CiTTyCAT, was used to examine processes responsible for the chemical evolution of the plume. The model was initialized with upwind data and compared with downwind measurements. The influence of high aerosol loading on photolysis rates in the plume was investigated using in situ aerosol measurements in the plume and lidar retrievals of optical depth as input into a photolysis code (Fast-J), run in the model. Significant impacts on photochemistry are found with a decrease of 18% in O-3 production and 24% in O-3 destruction over 5 days when including aerosols. The plume is found to be chemically active with large O-3 increases attributed primarily to PAN decomposition during descent of the plume toward Europe. The predicted O-3 changes are very dependent on temperature changes during transport and also on water vapor levels in the lower troposphere which can lead to O-3 destruction. Simulation of mixing/dilution was necessary to reproduce observed pollutant levels in the plume. Mixing was simulated using background concentrations from measurements in air masses in close proximity to the plume, and mixing timescales ( averaging 6.25 days) were derived from CO changes. Observed and simulated O-3/CO correlations in the plume were also compared in order to evaluate the photochemistry in the model. Observed slopes change from negative to positive over 5 days. This change, which can be attributed largely to photochemistry, is well reproduced by multiple model runs even if slope values are slightly underestimated suggesting a small underestimation in modeled photochemical O-3 production. The possible impact of this biomass burning plume on O-3 levels in the European boundary layer was also examined by running the model for a further 5 days and comparing with data collected at surface sites, such as Jungfraujoch, which showed small O-3 increases and elevated CO levels. The model predicts significant changes in O-3 over the entire 10 day period due to photochemistry but the signal is largely lost because of the effects of dilution. However, measurements in several other BB plumes over Europe show that O-3 impact of Alaskan fires can be potentially significant over Europe.
Atmospheric Environment | 2000
J.N Cape; John Methven; L.E Hudson
A first step in interpreting the wide variation in trace gas concentrations measured over time at a given site is to classify the data according to the prevailing weather conditions. In order to classify measurements made during two intensive field campaigns at Mace Head, on the west coast of Ireland, an objective method of assigning data to different weather types has been developed. Air-mass back trajectories calculated using winds from ECMWF analyses, arriving at the site in 1995–1997, were allocated to clusters based on a statistical analysis of the latitude, longitude and pressure of the trajectory at 12 h intervals over 5 days. The robustness of the analysis was assessed by using an ensemble of back trajectories calculated for four points around Mace Head. Separate analyses were made for each of the 3 years, and for four 3-month periods. The use of these clusters in classifying ground-based ozone measurements at Mace Head is described, including the need to exclude data which have been influenced by local perturbations to the regional flow pattern, for example, by sea breezes. Even with a limited data set, based on 2 months of intensive field measurements in 1996 and 1997, there are statistically significant differences in ozone concentrations in air from the different clusters. The limitations of this type of analysis for classification and interpretation of ground-based chemistry measurements are discussed.
Archive | 1999
M. A. Shapiro; Heini Wernli; Jain-Wen Bao; John Methven; Xiaolei Zou; James D. Doyle; Teddy Holt; Evelyn Donall-Grell; Paul J. Neiman
The emergence of meteorology as a rational science began around the turn of the twentieth century when Max Margules, Hermann Helmholtz, Felix Exner, and Vilhehn Bjerknes formulated the theoretical basis for what was previously considered an empirical science with a qualitative application to weather forecasting and climatology. The concurrent synoptic studies of Sir Napier Shaw, Rudolph Lempfert, Johan Sandstrom, V. Bjerknes, and Heinrich von Ficker, among others, provided insight into the structure and evolution of weather systems, and an assessment of the represen-tativeness of the proposed theories. The synergy between dynamic and synoptic meteorology inspired new theories, observing strategies, conceptual models, and dramatic advances in weather forecasting. During the period 1913–1922, the Leipzig and Norwegian schools of meteorology made fundamental contributions to the advancement of the emerging science. With V. Bjerknes as their director and mentor, the research associates and students at the Geophysical Institutes in Leipzig, Germany, and Bergen, Norway, synthesized theory, observations, synoptic analysis and diagnosis in their quest for physical understanding and improved weather prediction. Their efforts gave rise to revolutionary paradigms for the theory, structure, and evolution of frontal cyclones, many of which remain widely applied in research and weather forecasting. A historical perspective of the science and the milieu of the period is reviewed in the works of Bergeron (1959), Kutzbach (1979), Friedman (1989), and in the historical chapters in this volume by Eliassen (1998), Friedman (1998), Newton and Newton (1998), and Volkert (1998).
Physics of Fluids | 2005
Eyal Heifetz; John Methven
The optimal dynamics of conservative disturbances to plane parallel shear flows is interpreted in terms of the propagation and mutual interaction of components called counterpropagating Rossby waves (CRWs). Pairs of CRWs were originally used by Bretherton to provide a mechanistic explanation for unstable normal modes in the barotropic Rayleigh model and baroclinic two-layer model. One CRW has large amplitude in regions of positive mean cross-stream potential vorticity (PV) gradient, while the second CRW has large amplitude in regions of negative PV gradient. Each CRW propagates to the left of the mean PV gradient vector, parallel to the mean flow. If the mean flow is more positive where the PV gradient is positive, the intrinsic phase speeds of the two CRWs will be similar. The CRWs interact because the PV anomalies of one CRW induce cross-stream velocity at the location of the other CRW, thus advecting the mean PV. Although a single Rossby wave is neutral, their interaction can result in phase locking an...
Journal of Geophysical Research | 2007
Alastair C. Lewis; M. J. Evans; John Methven; N. Watson; James Lee; J. R. Hopkins; R. M. Purvis; S. R. Arnold; J. B. McQuaid; L. K. Whalley; Michael J. Pilling; Dwayne E. Heard; Paul S. Monks; A. E. Parker; C. E. Reeves; D. E. Oram; G. P. Mills; Brian J. Bandy; D. Stewart; Hugh Coe; Paul Williams; J. Crosier
The atmospheric composition of the central North Atlantic region has been sampled using the FAAM BAe146 instrumented aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) campaign, part of the wider International Consortium for Atmospheric Research on Transport and Transformation (ICARTT). This paper presents an overview of the ITOP campaign. Between late July and early August 2004, twelve flights comprising 72 hours of measurement were made in a region from approximately 20 to 40°W and 33 to 47°N centered on Faial Island, Azores, ranging in altitude from 50 to 9000 m. The vertical profiles of O3 and CO are consistent with previous observations made in this region during 1997 and our knowledge of the seasonal cycles within the region. A cluster analysis technique is used to partition the data set into air mass types with distinct chemical signatures. Six clusters provide a suitable balance between cluster generality and specificity. The clusters are labeled as biomass burning, low level outflow, upper level outflow, moist lower troposphere, marine and upper troposphere. During this summer, boreal forest fire emissions from Alaska and northern Canada were found to provide a major perturbation of tropospheric composition in CO, PAN, organic compounds and aerosol. Anthropogenic influenced air from the continental boundary layer of the USA was clearly observed running above the marine boundary layer right across the mid-Atlantic, retaining high pollution levels in VOCs and sulfate aerosol. Upper level outflow events were found to have far lower sulfate aerosol, resulting from washout on ascent, but much higher PAN associated with the colder temperatures. Lagrangian links with flights of other aircraft over the USA and Europe show that such signatures are maintained many days downwind of emission regions. Some other features of the data set are highlighted, including the strong perturbations to many VOCs and OVOCs in this remote region.
Journal of the Atmospheric Sciences | 1999
John Methven; Brian J. Hoskins
Abstract The usefulness of any simulation of atmospheric tracers using low-resolution winds relies on both the dominance of large spatial scales in the strain and time dependence that results in a cascade in tracer scales. Here, a quantitative study on the accuracy of such tracer studies is made using the contour advection technique. It is shown that, although contour stretching rates are very insensitive to the spatial truncation of the wind field, the displacement errors in filament position are sensitive. A knowledge of displacement characteristics is essential if Lagrangian simulations are to be used for the inference of airmass origin. A quantitative lower estimate is obtained for the tracer scale factor (TSF): the ratio of the smallest resolved scale in the advecting wind field to the smallest “trustworthy” scale in the tracer field. For a baroclinic wave life cycle the TSF = 6.1 ± 0.3 while for the Northern Hemisphere wintertime lower stratosphere the TSF = 5.5 ± 0.5, when using the most stringent ...
Bulletin of the American Meteorological Society | 2016
R. Swinbank; Masayuki Kyouda; Piers Buchanan; Lizzie Froude; Thomas M. Hamill; Tim Hewson; Julia H. Keller; Mio Matsueda; John Methven; Florian Pappenberger; Michael Scheuerer; Helen A. Titley; Laurence J. Wilson; Munehiko Yamaguchi
AbstractThe International Grand Global Ensemble (TIGGE) was a major component of The Observing System Research and Predictability Experiment (THORPEX) research program, whose aim is to accelerate improvements in forecasting high-impact weather. By providing ensemble prediction data from leading operational forecast centers, TIGGE has enhanced collaboration between the research and operational meteorological communities and enabled research studies on a wide range of topics.The paper covers the objective evaluation of the TIGGE data. For a range of forecast parameters, it is shown to be beneficial to combine ensembles from several data providers in a multimodel grand ensemble. Alternative methods to correct systematic errors, including the use of reforecast data, are also discussed.TIGGE data have been used for a range of research studies on predictability and dynamical processes. Tropical cyclones are the most destructive weather systems in the world and are a focus of multimodel ensemble research. Their ...
Journal of Climate | 2007
Piero Cau; John Methven; Brian J. Hoskins
The humidity in the dry regions of the tropical and subtropical troposphere has a major impact on the ability of the atmosphere to radiate heat to space. The water vapor content in these regions is determined by their “origins,” here defined as the last condensation event following air masses. Trajectory simulations are used to investigate such origins using the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) data for January 1993. It is shown that 96% of air parcels experience condensation within 24 days and most of the remaining 4% originate in the stratosphere. Dry air masses are shown to experience a net pressure increase since last condensation, which is uniform with latitude, while the median time taken for descent is 5 days into the subtropics but exceeds 16 days into the equatorial lower troposphere. The associated rate of decrease in potential temperature is consistent with radiative cooling. The relationship between the drier regions in the Tropics and subtropics and the geographical localization of their origin is investigated. Four transport processes are identified to explain these relationships.
Journal of Geophysical Research | 2001
John Methven; M. J. Evans; Peter G. Simmonds; G. Spain
Observations of a chemical at a point in the atmosphere typically show sudden transitions between episodes of high and low concentration. Often these are associated with a rapid change in the origin of air arriving at the site. Lagrangian chemical models riding along trajectories can reproduce such transitions, but small timing errors from trajectory phase errors dramatically reduce the correlation between modeled concentrations and observations. Here the origin averaging technique is introduced to obtain maps of average concentration as a function of air mass origin for the East Atlantic Summer Experiment 1996 (EASE96, a ground-based chemistry campaign). These maps are used to construct origin averaged time series which enable comparison between a chemistry model and observations with phase errors factored out. The amount of the observed signal explained by trajectory changes can be quantified, as can the systematic model errors as a function of air mass origin. The Cambridge Tropospheric Trajectory model of Chemistry and Transport (CiTTyCAT) can account for over 70% of the observed ozone signal variance during EASE96 when phase errors are side-stepped by origin averaging. The dramatic increase in correlation (from 23% without averaging) cannot be achieved by time averaging. The success of the model is attributed to the strong relationship between changes in ozone along trajectories and their origin and its ability to simulate those changes. The model performs less well for longer-lived chemical constituents because the initial conditions 5 days before arrival are insufficiently well known.
Journal of Geophysical Research | 2007
C. E. Reeves; Jana Slemr; D. E. Oram; David R. Worton; S. A. Penkett; D. Stewart; R. M. Purvis; N. Watson; J. R. Hopkins; A. C. Lewis; John Methven; D. R. Blake; Elliot Atlas
This paper is based on alkyl nitrate measurements made over the North Atlantic as part of the International Consortium for Research on Atmospheric Transport and Transformation (ICARTT). The focus is on the analysis of air samples collected on the UK BAe-146 aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) project, but air samples collected on board the NASA DC-8 and NOAA WP-3D aircraft as part of a Lagrangian experiment are also used. The ratios between the alkyl nitrates and their parent hydrocarbons are compared with those expected from chemical theory. Further, a box model is run to investigate the temporal evolution of the alkyl nitrates in three Lagrangian case studies and compared to observations. The air samples collected during ITOP do not appear to be strongly influenced by oceanic sources, but rather are influenced by emissions from the N.E. United States and from Alaskan fires. There also appears to be a widespread common source of ethyl nitrate and 1-propyl nitrate other than from their parent hydrocarbons. The general agreement between the alkyl nitrate data and photochemical theory suggests that during the first few days of transport from the source region, photochemical production of alkyl nitrates, and thus ozone, had taken place. The observations in the more photochemically processed air masses are consistent with the alkyl nitrate production reactions no longer dominating the peroxy radical self/cross reactions. Further, the results also suggest that the rates of photochemical processing in the Alaskan smoke plumes were small.