Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Moustakas is active.

Publication


Featured researches published by John Moustakas.


The Astrophysical Journal | 2007

The calibration of mid-infrared star formation rate indicators

D. Calzetti; Robert C. Kennicutt; C. W. Engelbracht; Claus Leitherer; B. T. Draine; Lisa J. Kewley; John Moustakas; Megan L. Sosey; Daniel A. Dale; Karl D. Gordon; G. Helou; David J. Hollenbach; Lee Armus; G. J. Bendo; Caroline Bot; Brent Alan Buckalew; T. H. Jarrett; Aigen Li; Martin Meyer; E. J. Murphy; Moire K. M. Prescott; Michael W. Regan; G. H. Rieke; Helene Roussel; Kartik Sheth; J. D. Smith; Michele D. Thornley; F. Walter

With the goal of investigating the degree to which the MIR emission traces the SFR, we analyze Spitzer 8 and 24 μm data of star-forming regions in a sample of 33 nearby galaxies with available HST NICMOS images in the Paα (1.8756 μm) emission line. The galaxies are drawn from the SINGS sample and cover a range of morphologies and a factor ~10 in oxygen abundance. Published data on local low-metallicity starburst galaxies and LIRGs are also included in the analysis. Both the stellar continuum-subtracted 8 μm emission and the 24 μm emission correlate with the extinction-corrected Paα line emission, although neither relationship is linear. Simple models of stellar populations and dust extinction and emission are able to reproduce the observed nonlinear trend of the 24 μm emission versus number of ionizing photons, including the modest deficiency of 24 μm emission in the low-metallicity regions, which results from a combination of decreasing dust opacity and dust temperature at low luminosities. Conversely, the trend of the 8 μm emission as a function of the number of ionizing photons is not well reproduced by the same models. The 8 μm emission is contributed, in larger measure than the 24 μm emission, by dust heated by nonionizing stellar populations, in addition to the ionizing ones, in agreement with previous findings. Two SFR calibrations, one using the 24 μm emission and the other using a combination of the 24 μm and Hα luminosities (Kennicutt and coworkers), are presented. No calibration is presented for the 8 μm emission because of its significant dependence on both metallicity and environment. The calibrations presented here should be directly applicable to systems dominated by ongoing star formation.


The Astrophysical Journal | 2007

THE MID-INFRARED SPECTRUM OF STAR-FORMING GALAXIES: GLOBAL PROPERTIES OF POLYCYCLIC AROMATIC HYDROCARBON EMISSION

J.-D. T. Smith; B. T. Draine; Daniel A. Dale; John Moustakas; Robert C. Kennicutt; G. Helou; Lee Armus; Helene Roussel; K. Sheth; G. J. Bendo; Brent Alan Buckalew; Daniela Calzetti; C. W. Engelbracht; Karl D. Gordon; David J. Hollenbach; Aigen Li; Sangeeta Malhotra; E. J. Murphy; F. Walter

We present a sample of low-resolution 5-38 μm Spitzer IRS spectra of the inner few square kiloparsecs of 59 nearby galaxies spanning a large range of star formation properties. A robust method for decomposing mid-infrared galaxy spectra is described and used to explore the behavior of PAH emission and the prevalence of silicate dust extinction. Evidence for silicate extinction is found in ~1/8 of the sample, at strengths that indicate that most normal galaxies undergo A_V ≲ 3 mag averaged over their centers. The contribution of PAH emission to the total infrared power is found to peak near 10% and extend up to ~20% and is suppressed at metallicities Z ≲ Z_☉/4, as well as in low-luminosity AGN environments. Strong interband PAH feature strength variations (2-5 times) are observed, with the presence of a weak AGN and, to a lesser degree, increasing metallicity shifting power to the longer wavelength bands. A peculiar PAH emission spectrum with markedly diminished 5-8 μm features arises among the sample solely in systems with relatively hard radiation fields harboring low-luminosity AGNs. The AGNs may modify the emitting grain distribution and provide the direct excitation source of the unusual PAH emission, which cautions against using absolute PAH strength to estimate star formation rates in systems harboring active nuclei. Alternatively, the low star formation intensity often associated with weak AGNs may affect the spectrum. The effect of variations in the mid-infrared spectrum on broadband infrared surveys is modeled and points to more than a factor of 2 uncertainty in results that assume a fixed PAH emission spectrum, for redshifts z = 0-2.5.


The Astrophysical Journal | 2007

Star Formation in NGC 5194 (M51a). II. The Spatially Resolved Star Formation Law

Robert C. Kennicutt; Daniela Calzetti; Fabian Walter; George Helou; David J. Hollenbach; Lee Armus; G. J. Bendo; Daniel A. Dale; B. T. Draine; C. W. Engelbracht; Karl D. Gordon; Moire K. M. Prescott; Michael W. Regan; Michele D. Thornley; Caroline Bot; Elias Brinks; Erwin de Blok; Duilia Fernandes de Mello; Martin Meyer; John Moustakas; E. J. Murphy; Kartik Sheth; J. D. Smith

We have studied the relationship between the star formation rate (SFR), surface density, and gas surface density in the spiral galaxy M51a (NGC 5194), using multiwavelength data obtained as part of the Spitzer Infrared Nearby Galaxies Survey (SINGS). We introduce a new SFR index based on a linear combination of Hα emission-line and 24 μm continuum luminosities, which provides reliable extinction-corrected ionizing fluxes and SFR densities over a wide range of dust attenuations. The combination of these extinction-corrected SFR densities with aperture synthesis H I and CO maps has allowed us to probe the form of the spatially resolved star formation law on scales of 0.5-2 kpc. We find that the resolved SFR versus gas surface density relation is well represented by a Schmidt power law, which is similar in form and dispersion to the disk-averaged Schmidt law. We observe a comparably strong correlation of the SFR surface density with the molecular gas surface density, but no significant correlation with the surface density of atomic gas. The best-fitting slope of the Schmidt law varies from N = 1.37 to 1.56, with zero point and slope that change systematically with the spatial sampling scale. We tentatively attribute these variations to the effects of areal sampling and averaging of a nonlinear intrinsic star formation law. Our data can also be fitted by an alternative parameterization of the SFR surface density in terms of the ratio of gas surface density to local dynamical time, but with a considerable dispersion.


Astrophysical Journal Supplement Series | 2010

OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER/SINGS GALAXIES

John Moustakas; Robert C. Kennicutt; Christy A. Tremonti; Daniel A. Dale; J.-D. T. Smith; Daniela Calzetti

We present intermediate-resolution optical spectrophotometry of 65 galaxies obtained in support of the Spitzer Infrared Nearby Galaxies Survey (SINGS). For each galaxy we obtain a nuclear, circumnuclear, and semi-integrated optical spectrum designed to coincide spatially with mid- and far-infrared spectroscopy from the Spitzer Space Telescope. We make the reduced, spectrophotometrically calibrated one-dimensional spectra, as well as measurements of the fluxes and equivalent widths of the strong nebular emission lines, publically available. We use optical emission-line ratios measured on all three spatial scales to classify the sample into star-forming, active galactic nuclei (AGNs), and galaxies with a mixture of star formation and nuclear activity. We find that the relative fraction of the sample classified as star forming versus AGN is a strong function of the integrated light enclosed by the spectroscopic aperture. We supplement our observations with a large database of nebular emission-line measurements of individual H II regions in the SINGS galaxies culled from the literature. We use these ancillary data to conduct a detailed analysis of the radial abundance gradients and average H II-region abundances of a large fraction of the sample. We combine these results with our new integrated spectra to estimate the central and characteristic (globally averaged) gas-phase oxygen abundances of all 75 SINGS galaxies. We conclude with an in-depth discussion of the absolute uncertainty in the nebular oxygen abundance scale.


The Astrophysical Journal | 2013

PRIMUS: Constraints on Star Formation Quenching and Galaxy Merging, and the Evolution of the Stellar Mass Function From z=0-1

John Moustakas; Alison L. Coil; James Aird; Michael R. Blanton; Richard Jacob Cool; Daniel J. Eisenstein; Alexander J. Mendez; Kenneth C. Wong; Guangtun Zhu; S. Arnouts

We measure the evolution of the stellar mass function (SMF) from z = 0−1 using multi-wavelength imaging and spectroscopic redshifts from the PRism MUlti-object Survey (PRIMUS) and the Sloan Digital Sky Survey (SDSS). From PRIMUS we construct an i < 23 flux-limited sample of ∼ 40,000 galaxies at z = 0.2 − 1.0 over five fields totaling ≈ 5.5 deg 2 , and from the SDSS we select ∼ 170,000 galaxies atz = 0.01−0.2 that we analyze consistently with respect to PRIMUS to minimize systematic errors in our evolutionary measurements. We find that the SMF of all galaxies evolves relatively little since z = 1, although we do find evidence for mass assembly downsizing; we measure a ≈ 30% increase in the number density of ∼ 10 10 M⊙ galaxies sincez ≈ 0.6, and a . 10% change in the number density of all & 10 11 M⊙ galaxies since z ≈ 1. Dividing the sample into star-forming and quiescent using an evolving cut in specific star-formation rate, we find that the number density of ∼ 10 10 M⊙ star-forming galaxies stays relatively constant since z ≈ 0.6, whereas the space-density of & 10 11 M⊙ star-forming galaxies decreases by ≈ 50% between z ≈ 1 and z ≈ 0. Meanwhile, the number density of ∼ 10 10 M⊙ quiescent galaxies increases steeply towards low redshift, by a factor of ∼ 2 − 3 since z ≈ 0.6, while the number of massive quiescent galaxies remains approximately constant since z ≈ 1. These results suggest that the rate at which star-forming galaxies are quenched increases with decreasing stellar mass, but that the bulk of the stellar mass buildup within the quiescent population occurs around ∼ 10 10.8 M⊙. In addition, we conclude that mergers do not appear to be a dominant channel for the stellar mass buildup of galaxies at z < 1, even among massive (& 10 11 M⊙) quiescent galaxies. Subject headings: Surveys – galaxies: evolution – galaxies: high-redshift – cosmology: large-scale structure of universe


The Astrophysical Journal | 2010

The calibration of monochromatic far-infrared star formation rate indicators

D. Calzetti; S.-Y. Wu; Sungryong Hong; Robert C. Kennicutt; Janice C. Lee; Daniel A. Dale; C. W. Engelbracht; L. van Zee; B. T. Draine; C.-N. Hao; Karl D. Gordon; John Moustakas; E. J. Murphy; Michael W. Regan; Ayesha Begum; Miwa Block; Julianne J. Dalcanton; Jose G. Funes; A. Gil de Paz; Benjamin D. Johnson; Shoko Sakai; Evan D. Skillman; F. Walter; Daniel R. Weisz; Benjamin F. Williams; Yanqin Wu

Spitzer data at 24, 70, and 160 μm and ground-based Hα images are analyzed for a sample of 189 nearby star-forming and starburst galaxies to investigate whether reliable star formation rate (SFR) indicators can be defined using the monochromatic infrared dust emission centered at 70 and 160 μm. We compare recently published recipes for SFR measures using combinations of the 24 μm and observed Hα luminosities with those using 24 μm luminosity alone. From these comparisons, we derive a reference SFR indicator for use in our analysis. Linear correlations between SFR and the 70 μm and 160 μm luminosity are found for L(70) ≳ 1.4 × 10^(42) erg s^(–1) and L(160) ≳ 2 × 10^(42) erg s^(–1), corresponding to SFR ≳ 0.1-0.3 M_☉ yr^(–1), and calibrations of SFRs based on L(70) and L(160) are proposed. Below those two luminosity limits, the relation between SFR and 70 μm (160 μm) luminosity is nonlinear and SFR calibrations become problematic. A more important limitation is the dispersion of the data around the mean trend, which increases for increasing wavelength. The scatter of the 70 μm (160 μm) data around the mean is about 25% (factor ~2) larger than the scatter of the 24 μm data. We interpret this increasing dispersion as an effect of the increasing contribution to the infrared emission of dust heated by stellar populations not associated with the current star formation. Thus, the 70 (160) μm luminosity can be reliably used to trace SFRs in large galaxy samples, but will be of limited utility for individual objects, with the exception of infrared-dominated galaxies. The nonlinear relation between SFR and the 70 and 160 μm emission at faint galaxy luminosities suggests a variety of mechanisms affecting the infrared emission for decreasing luminosity, such as increasing transparency of the interstellar medium, decreasing effective dust temperature, and decreasing filling factor of star-forming regions across the galaxy. In all cases, the calibrations hold for galaxies with oxygen abundance higher than roughly 12 +log(O/H) ~ 8.1. At lower metallicity, the infrared luminosity no longer reliably traces the SFR because galaxies are less dusty and more transparent.


The Astrophysical Journal | 2008

Metallicity Effects on Dust Properties in Starbursting Galaxies

C. W. Engelbracht; G. H. Rieke; Karl D. Gordon; J.-D. T. Smith; M. W. Werner; John Moustakas; Christopher N. A. Willmer; Leonardo Vanzi

We present infrared observations of 66 starburst galaxies over the full range of oxygen abundances observed in local star-forming galaxies, from -->12 + log (O/H) = 7.1 to 8.9. The data include imaging and spectroscopy from the Spitzer Space Telescope, supplemented by ground-based near-infrared imaging. We confirm a strong correlation of aromatic emission with metallicity, with a threshold at -->12 + log (O/H) ~ 8. We show that the far-infrared color temperature of the large dust grains increases toward lower metallicity, peaking at a metallicity of 8 before turning over. We compute dust masses and compare them to H I masses from the literature to derive the ratio of atomic gas to dust, which increases by nearly 3 orders of magnitude between solar metallicity and a metallicity of 8, below which it flattens out. The abrupt change in aromatic emission at mid-infrared wavelengths thus appears to be reflected in the far-infrared properties, indicating that metallicity changes affect the composition of the full range of dust grain sizes that dominate the infrared emission. Although the great majority of galaxies show similar patterns of behavior as described above, there are three exceptions, SBS 0335?052E, Haro 11, and SHOC 391. Their infrared SEDs are dominated energetically by the mid-IR near 24 ?m rather than by the 60-200 ?m region. In addition, they have very weak near-infrared outputs and their SEDs are dominated by emission by dust at wavelengths as short as 1.8 ?m. The latter behavior indicates that the dominant star-forming episodes in them are extremely young. The component of the ISM responsible for the usual far-infrared emission appears to be either missing or inefficiently heated in these three galaxies.


Annual Review of Astronomy and Astrophysics | 2009

Physical Properties and Environments of Nearby Galaxies

Michael R. Blanton; John Moustakas

We review the physical properties of nearby, relatively luminous galaxies, using results from newly available massive data sets together with more detailed observations. First, we present the global distribution of properties, including the optical and ultraviolet (UV) luminosity, stellar mass, and atomic gas mass functions. Second, we describe the shift of the galaxy population from late galaxy types in underdense regions to early galaxy types in overdense regions. We emphasize that the scaling relations followed by each galaxy type change very little with environment, with the exception of some minor but detectable effects. The shift in the population is apparent even at the densities of small groups and therefore cannot be exclusively due to physical processes operating in rich clusters. Third, we divide galaxies into four crude types—spiral, lenticular, elliptical, and merging systems—and describe some of their more detailed properties. We attempt to put these detailed properties into the global conte...


The Astrophysical Journal | 2013

CLASH: three strongly lensed images of a candidate z ≈ 11 galaxy

Dan Coe; Adi Zitrin; Mauricio Carrasco; Xinwen Shu; Wei Zheng; Marc Postman; L. Bradley; Anton M. Koekemoer; R. J. Bouwens; Tom Broadhurst; A. Monna; Ole Host; Leonidas A. Moustakas; Holland C. Ford; John Moustakas; Arjen van der Wel; Megan Donahue; Steven A. Rodney; N. Benítez; S. Jouvel; S. Seitz; Daniel D. Kelson; P. Rosati

We present a candidate for the most distant galaxy known to date with a photometric redshift of z = 10.7+0.6 –0.4 (95% confidence limits; with z < 9.5 galaxies of known types ruled out at 7.2σ). This J-dropout Lyman break galaxy, named MACS0647-JD, was discovered as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). We observe three magnified images of this galaxy due to strong gravitational lensing by the galaxy cluster MACSJ0647.7+7015 at z = 0.591. The images are magnified by factors of ~80, 7, and 2, with the brighter two observed at ~26th magnitude AB (~0.15 μJy) in the WFC3/IR F160W filter (~1.4-1.7 μm) where they are detected at 12σ. All three images are also confidently detected at 6σ in F140W (~1.2-1.6 μm), dropping out of detection from 15 lower wavelength Hubble Space Telescope filters (~0.2-1.4 μm), and lacking bright detections in Spitzer/IRAC 3.6 μm and 4.5 μm imaging (~3.2-5.0 μm). We rule out a broad range of possible lower redshift interlopers, including some previously published as high-redshift candidates. Our high-redshift conclusion is more conservative than if we had neglected a Bayesian photometric redshift prior. Given CLASH observations of 17 high-mass clusters to date, our discoveries of MACS0647-JD at z ~ 10.8 and MACS1149-JD at z ~ 9.6 are consistent with a lensed luminosity function extrapolated from lower redshifts. This would suggest that low-luminosity galaxies could have reionized the universe. However, given the significant uncertainties based on only two galaxies, we cannot yet rule out the sharp drop-off in number counts at z 10 suggested by field searches.


The Astrophysical Journal | 2006

Optical Star Formation Rate Indicators

John Moustakas; Robert C. Kennicutt; Christy A. Tremonti

Using integrated optical spectrophotometry for 412 star-forming galaxies at z ~ 0, and fiber-aperture spectrophotometry for 120,846 SDSS galaxies at z ~ 0.1, we investigate the Hα λ6563, Hβ λ4861, [O II] λ3727, and [O III] λ5007 nebular emission lines and the U-band luminosity as quantitative star formation rate (SFR) indicators. We demonstrate that the extinction-corrected Hα λ6563 luminosity is a reliable SFR tracer even in highly obscured star-forming galaxies. We find that variations in dust reddening dominate the systematic uncertainty in SFRs derived from the observed Hβ, [O II], and U-band luminosities, producing a factor of ~1.7, ~2.5, and ~2.1 scatter in the mean transformations, respectively. We show that [O II] depends weakly on variations in oxygen abundance over a wide range in metallicity, 12 + log(O/H) = 8.15-8.7 (Z/Z☉ = 0.28-1.0), and that in this metallicity interval galaxies occupy a narrow range in ionization parameter (-3.8 log U -2.9). We show that the scatter in [O III] λ5007 as a SFR indicator is a factor of 3-4 due to its sensitivity to metal abundance and ionization. We develop empirical SFR calibrations for Hβ and [O II] parameterized in terms of the B-band luminosity, which remove the systematic effects of reddening and metallicity and reduce the SFR scatter to ±40% and ±90%, respectively, although individual galaxies may deviate substantially from the median relations. Finally, we compare the z ~ 0 relations between blue luminosity and reddening, ionization, and [O II]/Hα ratio against measurements at z ~ 1 and find broad agreement. We emphasize, however, that optical emission-line measurements including Hα for larger samples of intermediate- and high-redshift galaxies are needed to test the applicability of our locally derived SFR calibrations to distant galaxies.

Collaboration


Dive into the John Moustakas's collaboration.

Top Co-Authors

Avatar

Alison L. Coil

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Postman

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Adi Zitrin

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Holland C. Ford

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Megan Donahue

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

L. Bradley

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton M. Koekemoer

Space Telescope Science Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge