Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John N. Barr is active.

Publication


Featured researches published by John N. Barr.


Journal of General Virology | 2011

Recent advances in the molecular and cellular biology of bunyaviruses

Cheryl T. Walter; John N. Barr

The family Bunyaviridae of segmented, negative-stranded RNA viruses includes over 350 members that infect a bewildering variety of animals and plants. Many of these bunyaviruses are the causative agents of serious disease in their respective hosts, and are classified as emerging viruses because of their increased incidence in new populations and geographical locations throughout the world. Emerging bunyaviruses, such as Crimean-Congo hemorrhagic fever virus, tomato spotted wilt virus and Rift Valley fever virus, are currently attracting great interest due to migration of their arthropod vectors, a situation possibly linked to climate change. These and other examples of continued emergence suggest that bunyaviruses will probably continue to pose a sustained global threat to agricultural productivity, animal welfare and human health. The threat of emergence is particularly acute in light of the lack of effective preventative or therapeutic treatments for any of these viruses, making their study an important priority. This review presents recent advances in the understanding of the bunyavirus life cycle, including aspects of their molecular, cellular and structural biology. Whilst special emphasis is placed upon the emerging bunyaviruses, we also describe the extensive body of work involving model bunyaviruses, which have been the subject of major contributions to our overall understanding of this important group of viruses.


Molecular & Cellular Proteomics | 2010

Quantitative Proteomic Analysis of A549 Cells Infected with Human Respiratory Syncytial Virus

Diane C. Munday; Edward Emmott; Rebecca Surtees; Charles-Hugues Lardeau; Weining Wu; W. Paul Duprex; Brian K. Dove; John N. Barr; Julian A. Hiscox

Human respiratory syncytial virus (HRSV) is a major cause of pediatric lower respiratory tract disease to which there is no vaccine or efficacious chemotherapeutic strategy. Although RNA synthesis and virus assembly occur in the cytoplasm, HRSV is known to induce nuclear responses in the host cell as replication alters global gene expression. Quantitative proteomics was used to take an unbiased overview of the protein changes in transformed human alveolar basal epithelial cells infected with HRSV. Underpinning this was the use of stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS, which allowed the direct and simultaneous identification and quantification of both cellular and viral proteins. To reduce sample complexity and increase data return on potential protein localization, cells were fractionated into nuclear and cytoplasmic extracts. This resulted in the identification of 1,140 cellular proteins and six viral proteins. The proteomics data were analyzed using Ingenuity Pathways Analysis to identify defined canonical pathways and functional groupings. Selected data were validated using Western blot, direct and indirect immunofluorescence confocal microscopy, and functional assays. The study served to validate and expand upon known HRSV-host cell interactions, including those associated with the antiviral response and alterations in subnuclear structures such as the nucleolus and ND10 (promyelocytic leukemia bodies). In addition, novel changes were observed in mitochondrial proteins and functions, cell cycle regulatory molecules, nuclear pore complex proteins and nucleocytoplasmic trafficking proteins. These data shed light into how the cell is potentially altered to create conditions more favorable for infection. Additionally, the study highlights the application and advantage of stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS for the analysis of virus-host interactions.


Journal of Virology | 2004

Bunyamwera Bunyavirus RNA Synthesis Requires Cooperation of 3′- and 5′-Terminal Sequences

John N. Barr; Gail W. Wertz

ABSTRACT Bunyamwera virus (BUNV) is the prototype of both the Orthobunyavirus genus and the Bunyaviridae family of segmented negative-sense RNA viruses. The tripartite BUNV genome consists of small (S), medium (M), and large (L) segments that are each transcribed to yield a single mRNA and are replicated to generate an antigenome that acts as a template for synthesis of further genomic strands. As for all negative-sense RNA viruses, the 3′- and 5′-terminal nontranslated regions (NTRs) of the BUNV S, M, and L segments exhibit nucleotide complementarity and, except for one conserved U-G pairing, this complementarity extends for 15, 18, and 19 nucleotides, respectively. We investigated whether the complementarity of 3′ and 5′ NTRs reflected a functional requirement for terminal cooperation to promote BUNV RNA synthesis or, alternatively, was a consequence of genomic and antigenomic NTRs having similar functions requiring sequence conservation. We show that cooperation between 3′- and 5′-NTR sequences is required for BUNV RNA synthesis, and our results suggest that this cooperation is due to nucleotide complementarity allowing 3′ and 5′ NTRs to associate through base-pairing interactions. To examine the importance of complementarity in promoting BUNV RNA synthesis, we utilized a competitive replication assay able to examine the replication ability of all possible combinations of interacting nucleotides within a defined region of BUNV 3′ and 5′ NTRs. We show here that maximal RNA replication was signaled when sequences exhibiting perfect complementarity within 3′ and 5′ NTRs were selected.


Journal of Virology | 2012

Structure, Function, and Evolution of the Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein

Stephen D. Carter; Rebecca Surtees; Cheryl T. Walter; Antonio Ariza; Éric Bergeron; Stuart T. Nichol; Julian A. Hiscox; Thomas A. Edwards; John N. Barr

ABSTRACT Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging tick-borne virus of the Bunyaviridae family that is responsible for a fatal human disease for which preventative or therapeutic measures do not exist. We solved the crystal structure of the CCHFV strain Baghdad-12 nucleocapsid protein (N), a potential therapeutic target, at a resolution of 2.1 Å. N comprises a large globular domain composed of both N- and C-terminal sequences, likely involved in RNA binding, and a protruding arm domain with a conserved DEVD caspase-3 cleavage site at its apex. Alignment of our structure with that of the recently reported N protein from strain YL04057 shows a close correspondence of all folds but significant transposition of the arm through a rotation of 180 degrees and a translation of 40 Å. These observations suggest a structural flexibility that may provide the basis for switching between alternative N protein conformations during important functions such as RNA binding and oligomerization. Our structure reveals surfaces likely involved in RNA binding and oligomerization, and functionally critical residues within these domains were identified using a minigenome system able to recapitulate CCHFV-specific RNA synthesis in cells. Caspase-3 cleaves the polypeptide chain at the exposed DEVD motif; however, the cleaved N protein remains an intact unit, likely due to the intimate association of N- and C-terminal fragments in the globular domain. Structural alignment with existing N proteins reveals that the closest CCHFV relative is not another bunyavirus but the arenavirus Lassa virus instead, suggesting that current segmented negative-strand RNA virus taxonomy may need revision.


Proteomics | 2012

Using SILAC and quantitative proteomics to investigate the interactions between viral and host proteomes

Diane C. Munday; Rebecca Surtees; Edward Emmott; Brian K. Dove; Paul Digard; John N. Barr; Adrian Whitehouse; David A. Matthews; Julian A. Hiscox

Viruses continue to pose some of the greatest threats to human and animal health, and food security worldwide. Therefore, new approaches are required to increase our understanding of virus‐host cell interactions and subsequently design more effective therapeutic countermeasures. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture (SILAC), coupled to LC‐MS/MS and bioinformatic analysis, is providing an excellent resource for studying host cell proteomes and can readily be applied for the study of virus infection. Here, we review this approach and discuss how virus‐host cell interactions can best be studied, what is realistically feasible, and the potential limitations. For example, sub‐cellular fractionation can reduce sample complexity for LC‐MS/MS, increase data return and provide information regarding protein trafficking between different cellular compartments. The key to successful quantitative proteomics combines good experimental design and appropriate sample preparation with statistical analysis and validation of the MS data through the use of independent techniques and functional analysis. The annotation of the human genome and the increasing availability of biological reagents such as antibodies, provide the optimum parameters for studying viruses that infect humans, in human cell lines. SILAC‐based quantitative proteomics can also be used to study the interactome of viral proteins with the host cell. Coupling proteomic studies with global transcriptomic and RNA depletion experiments will provide great insights into the complexity of the infection process, and potentially reveal new antiviral targets.


FEBS Letters | 2010

Direct visualization of the small hydrophobic protein of human respiratory syncytial virus reveals the structural basis for membrane permeability

Stephen D. Carter; Kyle C. Dent; Elizabeth Atkins; Toshana L. Foster; Mark Verow; Petra Gorny; Mark Harris; Julian A. Hiscox; Neil A. Ranson; Stephen Griffin; John N. Barr

MINT‐7890784, MINT‐7890776: SH (uniprotkb:P04852) and SH (uniprotkb:P04852) bind (MI:0407) by electron microscopy (MI:0040)


Journal of Virology | 2001

Polymerase Slippage at Vesicular Stomatitis Virus Gene Junctions To Generate Poly(A) Is Regulated by the Upstream 3′-AUAC-5′ Tetranucleotide: Implications for the Mechanism of Transcription Termination

John N. Barr; Gail W. Wertz

ABSTRACT Termination of mRNA synthesis in vesicular stomatitis virus (VSV), the prototypic rhabdovirus, is controlled by a 13-nucleotide gene end sequence which comprises the conserved tetranucleotide 3′-AUAC-5′, the U7 tract and the intergenic dinucleotide. mRNAs terminated at this sequence possess 100- to 300-nucleotide-long 3′ poly(A) tails which are thought to result from polymerase slippage (reiterative transcription) by the VSV polymerase on the U7tract. Previously we determined that in addition to the AUAC tetranucleotide, the U7 tract was an essential signal in the termination process. Shortening or interrupting the U7tract abolished termination. These altered U tracts also prevented the polymerase from performing reiterative transcription necessary for generation of the mRNA poly(A) tail and thus established seven residues as the minimum length of U tract that allowed reiterative transcription to occur. In this study we investigated whether sequences other than the essential U7 tract are involved in controlling polymerase slippage. We investigated whether the AUAC tetranucleotide affected the process of reiterative transcription by analyzing the nucleotide sequence of RNAs transcribed from altered subgenomic templates and infectious VSV variants. The tetranucleotide was found to regulate reiterative transcription on the U7 tract. The extent of polymerase slippage was governed not by specific tetranucleotide sequences but rather by nucleotide composition such that slippage occurred when the tetranucleotide was composed of A or U residues but not when it was composed of G or C residues. This suggested that polymerase slippage was controlled, at least in part, by the strength of base pairing between the template and nascent strands. Further data presented here indicate that the tetranucleotide contains both a signal that directs the VSV polymerase to slip on the downstream U7 tract and also a signal that directs a slipping polymerase to terminate mRNA synthesis.


Nucleic Acids Research | 2013

Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization

Antonio Ariza; Sian J. Tanner; Cheryl T. Walter; Kyle C. Dent; Dale A. Shepherd; Weining Wu; Susan V. Matthews; Julian A. Hiscox; Todd J. Green; Ming Luo; Richard M. Elliott; Anthony R. Fooks; Alison E. Ashcroft; Nicola J. Stonehouse; Neil A. Ranson; John N. Barr; Thomas A. Edwards

All orthobunyaviruses possess three genome segments of single-stranded negative sense RNA that are encapsidated with the virus-encoded nucleocapsid (N) protein to form a ribonucleoprotein (RNP) complex, which is uncharacterized at high resolution. We report the crystal structure of both the Bunyamwera virus (BUNV) N–RNA complex and the unbound Schmallenberg virus (SBV) N protein, at resolutions of 3.20 and 2.75 Å, respectively. Both N proteins crystallized as ring-like tetramers and exhibit a high degree of structural similarity despite classification into different orthobunyavirus serogroups. The structures represent a new RNA-binding protein fold. BUNV N possesses a positively charged groove into which RNA is deeply sequestered, with the bases facing away from the solvent. This location is highly inaccessible, implying that RNA polymerization and other critical base pairing events in the virus life cycle require RNP disassembly. Mutational analysis of N protein supports a correlation between structure and function. Comparison between these crystal structures and electron microscopy images of both soluble tetramers and authentic RNPs suggests the N protein does not bind RNA as a repeating monomer; thus, it represents a newly described architecture for bunyavirus RNP assembly, with implications for many other segmented negative-strand RNA viruses.


Journal of Virology | 2000

Identification of a Minimal Size Requirement for Termination of Vesicular Stomatitis Virus mRNA: Implications for the Mechanism of Transcription

Sean P. J. Whelan; John N. Barr; Gail W. Wertz

ABSTRACT The nonsegmented negative-strand RNA (NNS) viruses have a single-stranded RNA genome tightly encapsidated by the viral nucleocapsid protein. The viral polymerase transcribes the genome responding to specific gene-start and gene-end sequences to yield a series of discrete monocistronic mRNAs. These mRNAs are not produced in equimolar amounts; rather, their abundance reflects the position of the gene with respect to the single 3′-proximal polymerase entry site. Promoter-proximal genes are transcribed in greater abundance than more distal genes due to a localized transcriptional attenuation at each gene junction. In recent years, the application of reverse genetics to the NNS viruses has allowed an examination of the role of the gene-start and gene-end sequences in regulating mRNA synthesis. These studies have defined specific sequences required for initiation, 5′ modification, termination, and polyadenylation of the viral mRNAs. In the present report, working with Vesicular stomatitis virus, the prototypic Rhabdovirus, we demonstrate that a gene-end sequence must be positioned a minimal distance from a gene-start sequence for the polymerase to efficiently terminate transcription. Gene-end sequences were almost completely ignored in transcriptional units less than 51 nucleotides. Transcriptional units of 51 to 64 nucleotides allowed termination at the gene-end sequence, although the frequency with which polymerase failed to terminate and instead read through the gene-end sequence to generate a bicistronic transcript was enhanced compared to the observed 1 to 3% for wild-type viral mRNAs. In all instances, failure to terminate at the gene end prevented initiation at the downstream gene start site. In contrast to this size requirement, we show that the sequence between the gene-start and gene-end signals, or its potential to adopt an RNA secondary structure, had only a minor effect on the efficiency with which polymerase terminated transcription. We suggest three possible explanations for the failure of polymerase to terminate transcription in response to a gene-end sequence positioned close to a gene-start sequence which contribute to our emerging picture of the mechanism of transcriptional regulation in this group of viruses.


Structure | 2013

The asymmetric structure of an icosahedral virus bound to its receptor suggests a mechanism for genome release.

Kyle C. Dent; Rebecca F. Thompson; Amy M. Barker; Julian A. Hiscox; John N. Barr; Peter G. Stockley; Neil A. Ranson

Summary Simple, spherical RNA viruses have well-understood, symmetric protein capsids, but little structural information is available for their asymmetric components, such as minor proteins and their genomes, which are vital for infection. Here, we report an asymmetric structure of bacteriophage MS2, attached to its receptor, the F-pilus. Cryo-electron tomography and subtomographic averaging of such complexes result in a structure containing clear density for the packaged genome, implying that the conformation of the genome is the same in each virus particle. The data also suggest that the single-copy viral maturation protein breaks the symmetry of the capsid, occupying a position that would be filled by a coat protein dimer in an icosahedral shell. This capsomere can thus fulfill its known biological roles in receptor and genome binding and suggests an exit route for the genome during infection.

Collaboration


Dive into the John N. Barr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weining Wu

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge