Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John N. Weinstein is active.

Publication


Featured researches published by John N. Weinstein.


Cell | 2013

The somatic genomic landscape of glioblastoma.

Cameron Brennan; Roel G.W. Verhaak; Aaron McKenna; Benito Campos; Houtan Noushmehr; Sofie R. Salama; Siyuan Zheng; Debyani Chakravarty; J. Zachary Sanborn; Samuel H. Berman; Rameen Beroukhim; Brady Bernard; Chang-Jiun Wu; Giannicola Genovese; Ilya Shmulevich; Jill S. Barnholtz-Sloan; Lihua Zou; Rahulsimham Vegesna; Sachet A. Shukla; Giovanni Ciriello; W.K. Yung; Wei Zhang; Carrie Sougnez; Tom Mikkelsen; Kenneth D. Aldape; Darell D. Bigner; Erwin G. Van Meir; Michael D. Prados; Andrew E. Sloan; Keith L. Black

We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.


Journal of Clinical Investigation | 1995

Generation of a drug resistance profile by quantitation of mdr-1/P-glycoprotein in the cell lines of the National Cancer Institute Anticancer Drug Screen.

Manuel Alvarez; K. Paull; A. Monks; C. Hose; Jong-Seok Lee; John N. Weinstein; M. Grever; Susan E. Bates; Tito Fojo

Identifying new chemotherapeutic agents and characterizing mechanisms of resistance may improve cancer treatment. The Anticancer Drug Screen of the National Cancer Institute uses 60 cell lines to identify new agents. Expression of mdr-1/P-glycoprotein was measured by quantitative PCR. Expression was detected in 39 cell lines; the highest levels were in renal and colon carcinomas. Expression was also detected in all melanomas and central nervous system tumors, but in only one ovarian carcinoma and one leukemia cell line. Using a modified version of the COMPARE program, a high correlation was found between expression of mdr-1 and cellular resistance to a large number of compounds. Evidence that these compounds are P-glycoprotein substrates includes: (a) enhancement of cytotoxicity by verapamil; (b) demonstration of cross-resistance in a multidrug-resistant cell line, (c) ability to antagonize P-glycoprotein, increasing vinblastine accumulation by decreasing efflux; and (d) inhibition of photoaffinity labeling by azidopine. Identification of many heretofore unrecognized compounds as substrates indicates that P-glycoprotein has a broader substrate specificity than previously recognized. This study confirms the validity of this novel approach and provides the basis for similar studies examining a diverse group of gene products, including other resistance mechanisms, putative drug targets, and genes involved in the cell cycle and apoptosis.


Cancer Discovery | 2015

Co-occurring genomic alterations define major subsets of KRAS - mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities

Ferdinandos Skoulidis; Lauren Averett Byers; Lixia Diao; Vassiliki Papadimitrakopoulou; Pan Tong; Julie Izzo; Carmen Behrens; Humam Kadara; Edwin R. Parra; Jaime Rodriguez Canales; Jianjun Zhang; Uma Giri; Jayanthi Gudikote; Maria Angelica Cortez; Chao Yang; You Hong Fan; Michael Peyton; Luc Girard; Kevin R. Coombes; Carlo Toniatti; Timothy P. Heffernan; Murim Choi; Garrett Michael Frampton; Vincent A. Miller; John N. Weinstein; Roy S. Herbst; Kwok-Kin Wong; Jianhua Zhang; Padmanee Sharma; Gordon B. Mills

UNLABELLED The molecular underpinnings that drive the heterogeneity of KRAS-mutant lung adenocarcinoma are poorly characterized. We performed an integrative analysis of genomic, transcriptomic, and proteomic data from early-stage and chemorefractory lung adenocarcinoma and identified three robust subsets of KRAS-mutant lung adenocarcinoma dominated, respectively, by co-occurring genetic events in STK11/LKB1 (the KL subgroup), TP53 (KP), and CDKN2A/B inactivation coupled with low expression of the NKX2-1 (TTF1) transcription factor (KC). We further revealed biologically and therapeutically relevant differences between the subgroups. KC tumors frequently exhibited mucinous histology and suppressed mTORC1 signaling. KL tumors had high rates of KEAP1 mutational inactivation and expressed lower levels of immune markers, including PD-L1. KP tumors demonstrated higher levels of somatic mutations, inflammatory markers, immune checkpoint effector molecules, and improved relapse-free survival. Differences in drug sensitivity patterns were also observed; notably, KL cells showed increased vulnerability to HSP90-inhibitor therapy. This work provides evidence that co-occurring genomic alterations identify subgroups of KRAS-mutant lung adenocarcinoma with distinct biology and therapeutic vulnerabilities. SIGNIFICANCE Co-occurring genetic alterations in STK11/LKB1, TP53, and CDKN2A/B-the latter coupled with low TTF1 expression-define three major subgroups of KRAS-mutant lung adenocarcinoma with distinct biology, patterns of immune-system engagement, and therapeutic vulnerabilities.


Nature Biotechnology | 2014

Assessing the clinical utility of cancer genomic and proteomic data across tumor types

Yuan Yuan; Eliezer M. Van Allen; Larsson Omberg; Nikhil Wagle; Ali Amin-Mansour; Artem Sokolov; Lauren Averett Byers; Yanxun Xu; Kenneth R. Hess; Lixia Diao; Leng Han; Xuelin Huang; Michael S. Lawrence; John N. Weinstein; Josh Stuart; Gordon B. Mills; Levi A. Garraway; Adam A. Margolin; Gad Getz; Han Liang

Molecular profiling of tumors promises to advance the clinical management of cancer, but the benefits of integrating molecular data with traditional clinical variables have not been systematically studied. Here we retrospectively predict patient survival using diverse molecular data (somatic copy-number alteration, DNA methylation and mRNA, microRNA and protein expression) from 953 samples of four cancer types from The Cancer Genome Atlas project. We find that incorporating molecular data with clinical variables yields statistically significantly improved predictions (FDR < 0.05) for three cancers but those quantitative gains were limited (2.2–23.9%). Additional analyses revealed little predictive power across tumor types except for one case. In clinically relevant genes, we identified 10,281 somatic alterations across 12 cancer types in 2,928 of 3,277 patients (89.4%), many of which would not be revealed in single-tumor analyses. Our study provides a starting point and resources, including an open-access model evaluation platform, for building reliable prognostic and therapeutic strategies that incorporate molecular data.


Genome Research | 2015

Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution

Hoon Kim; Siyuan Zheng; Seyed S. Amini; Selene Virk; Tom Mikkelsen; Daniel J. Brat; Jonna Grimsby; Carrie Sougnez; Florian Muller; Jian Hu; Andrew E. Sloan; Mark L. Cohen; Erwin G. Van Meir; Lisa Scarpace; Peter W. Laird; John N. Weinstein; Eric S. Lander; Stacey Gabriel; Gad Getz; Matthew Meyerson; Lynda Chin; Jill S. Barnholtz-Sloan; Roel G.W. Verhaak

Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼ 7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity.


Clinical Cancer Research | 2016

A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition

Milena P. Mak; Pan Tong; Lixia Diao; Robert J. Cardnell; Don L. Gibbons; William N. William; Ferdinandos Skoulidis; Edwin R. Parra; Jaime Rodriguez-Canales; Ignacio I. Wistuba; John V. Heymach; John N. Weinstein; Kevin R. Coombes; Jing Wang; Lauren Averett Byers

Purpose: We previously demonstrated the association between epithelial-to-mesenchymal transition (EMT) and drug response in lung cancer using an EMT signature derived in cancer cell lines. Given the contribution of tumor microenvironments to EMT, we extended our investigation of EMT to patient tumors from 11 cancer types to develop a pan-cancer EMT signature. Experimental Design: Using the pan-cancer EMT signature, we conducted an integrated, global analysis of genomic and proteomic profiles associated with EMT across 1,934 tumors including breast, lung, colon, ovarian, and bladder cancers. Differences in outcome and in vitro drug response corresponding to expression of the pan-cancer EMT signature were also investigated. Results: Compared with the lung cancer EMT signature, the patient-derived, pan-cancer EMT signature encompasses a set of core EMT genes that correlate even more strongly with known EMT markers across diverse tumor types and identifies differences in drug sensitivity and global molecular alterations at the DNA, RNA, and protein levels. Among those changes associated with EMT, pathway analysis revealed a strong correlation between EMT and immune activation. Further supervised analysis demonstrated high expression of immune checkpoints and other druggable immune targets, such as PD1, PD-L1, CTLA4, OX40L, and PD-L2, in tumors with the most mesenchymal EMT scores. Elevated PD-L1 protein expression in mesenchymal tumors was confirmed by IHC in an independent lung cancer cohort. Conclusions: This new signature provides a novel, patient-based, histology-independent tool for the investigation of EMT and offers insights into potential novel therapeutic targets for mesenchymal tumors, independent of cancer type, including immune checkpoints. Clin Cancer Res; 22(3); 609–20. ©2015 AACR.


Science | 2008

A Postgenomic Visual Icon

John N. Weinstein

A decade of experience in visualizing large-scale genotypic and phenotypic data as heat maps has illuminated the strengths and limitations of the approach.


EBioMedicine | 2016

Meta-Analysis of the Luminal and Basal Subtypes of Bladder Cancer and the Identification of Signature Immunohistochemical Markers for Clinical Use

Vipulkumar Dadhania; Miao Zhang; Li Zhang; Jolanta Bondaruk; Tadeusz Majewski; Arlene O. Siefker-Radtke; Charles C. Guo; Colin P. Dinney; David Cogdell; Shizhen Zhang; Sangkyou Lee; June G. Lee; John N. Weinstein; Keith A. Baggerly; David J. McConkey; Bogdan Czerniak

Background It has been suggested that bladder cancer can be divided into two molecular subtypes referred to as luminal and basal with distinct clinical behaviors and sensitivities to chemotherapy. We aimed to validate these subtypes in several clinical cohorts and identify signature immunohistochemical markers that would permit simple and cost-effective classification of the disease in primary care centers. Methods We analyzed genomic expression profiles of bladder cancer in three cohorts of fresh frozen tumor samples: MD Anderson (n = 132), Lund (n = 308), and The Cancer Genome Atlas (TCGA) (n = 408) to validate the expression signatures of luminal and basal subtypes and relate them to clinical follow-up data. We also used an MD Anderson cohort of archival bladder tumor samples (n = 89) and a parallel tissue microarray to identify immunohistochemical markers that permitted the molecular classification of bladder cancer. Findings Bladder cancers could be assigned to two candidate intrinsic molecular subtypes referred to here as luminal and basal in all of the datasets analyzed. Luminal tumors were characterized by the expression signature similar to the intermediate/superficial layers of normal urothelium. They showed the upregulation of PPARγ target genes and the enrichment for FGFR3, ELF3, CDKN1A, and TSC1 mutations. In addition, luminal tumors were characterized by the overexpression of E-Cadherin, HER2/3, Rab-25, and Src. Basal tumors showed the expression signature similar to the basal layer of normal urothelium. They showed the upregulation of p63 target genes, the enrichment for TP53 and RB1 mutations, and overexpression of CD49, Cyclin B1, and EGFR. Survival analyses showed that the muscle-invasive basal bladder cancers were more aggressive when compared to luminal cancers. The immunohistochemical expressions of only two markers, luminal (GATA3) and basal (KRT5/6), were sufficient to identify the molecular subtypes of bladder cancer with over 90% accuracy. Interpretation The molecular subtypes of bladder cancer have distinct clinical behaviors and sensitivities to chemotherapy, and a simple two-marker immunohistochemical classifier can be used for prognostic and therapeutic stratification. Funding U.S. National Cancer Institute and National Institute of Health.


Molecular Oncology | 2009

Report on EU-USA workshop: how systems biology can advance cancer research (27 October 2008).

Ruedi Aebersold; Charles Auffray; Erin Baney; Emmanuel Barillot; Alvis Brazma; Catherine Brett; Søren Brunak; Atul J. Butte; Julio E. Celis; Tanja Čufer; James E. Ferrell; David J. Galas; Daniel Gallahan; Robert A. Gatenby; Albert Goldbeter; Nataša Hace; Adriano Henney; Lee Hood; Ravi Iyengar; Vicky Jackson; Ollie Kallioniemi; Ursula Klingmüller; Patrik Kolar; Walter Kolch; Christina Kyriakopoulou; Frank Laplace; Hans Lehrach; Frederick Marcus; Lynn Matrisian; Garry P. Nolan

The main conclusion is that systems biology approaches can indeed advance cancer research, having already proved successful in a very wide variety of cancer‐related areas, and are likely to prove superior to many current research strategies. Major points include: Systems biology and computational approaches can make important contributions to research and development in key clinical aspects of cancer and of cancer treatment, and should be developed for understanding and application to diagnosis, biomarkers, cancer progression, drug development and treatment strategies. Development of new measurement technologies is central to successful systems approaches, and should be strongly encouraged. The systems view of disease combined with these new technologies and novel computational tools will over the next 5–20years lead to medicine that is predictive, personalized, preventive and participatory (P4 medicine). Major initiatives are in progress to gather extremely wide ranges of data for both somatic and germ‐line genetic variations, as well as gene, transcript, protein and metabolite expression profiles that are cancer‐relevant. Electronic databases and repositories play a central role to store and analyze these data. These resources need to be developed and sustained. Understanding cellular pathways is crucial in cancer research, and these pathways need to be considered in the context of the progression of cancer at various stages. At all stages of cancer progression, major areas require modelling via systems and developmental biology methods including immune system reactions, angiogenesis and tumour progression. A number of mathematical models of an analytical or computational nature have been developed that can give detailed insights into the dynamics of cancer‐relevant systems. These models should be further integrated across multiple levels of biological organization in conjunction with analysis of laboratory and clinical data. Biomarkers represent major tools in determining the presence of cancer, its progression and the responses to treatments. There is a need for sets of high‐quality annotated clinical samples, enabling comparisons across different diseases and the quantitative simulation of major pathways leading to biomarker development and analysis of drug effects. Education is recognized as a key component in the success of any systems biology programme, especially for applications to cancer research. It is recognized that a balance needs to be found between the need to be interdisciplinary and the necessity of having extensive specialist knowledge in particular areas. A proposal from this workshop is to explore one or more types of cancer over the full scale of their progression, for example glioblastoma or colon cancer. Such an exemplar project would require all the experimental and computational tools available for the generation and analysis of quantitative data over the entire hierarchy of biological information. These tools and approaches could be mobilized to understand, detect and treat cancerous processes and establish methods applicable across a wide range of cancers.


Journal of Biomedical Informatics | 2010

Exposing the cancer genome atlas as a SPARQL endpoint

Helena F. Deus; Diogo F. Veiga; Pablo R. Freire; John N. Weinstein; Gordon B. Mills; Jonas S. Almeida

The Cancer Genome Atlas (TCGA) is a multidisciplinary, multi-institutional effort to characterize several types of cancer. Datasets from biomedical domains such as TCGA present a particularly challenging task for those interested in dynamically aggregating its results because the data sources are typically both heterogeneous and distributed. The Linked Data best practices offer a solution to integrate and discover data with those characteristics, namely through exposure of data as Web services supporting SPARQL, the Resource Description Framework query language. Most SPARQL endpoints, however, cannot easily be queried by data experts. Furthermore, exposing experimental data as SPARQL endpoints remains a challenging task because, in most cases, data must first be converted to Resource Description Framework triples. In line with those requirements, we have developed an infrastructure to expose clinical, demographic and molecular data elements generated by TCGA as a SPARQL endpoint by assigning elements to entities of the Simple Sloppy Semantic Database (S3DB) management model. All components of the infrastructure are available as independent Representational State Transfer (REST) Web services to encourage reusability, and a simple interface was developed to automatically assemble SPARQL queries by navigating a representation of the TCGA domain. A key feature of the proposed solution that greatly facilitates assembly of SPARQL queries is the distinction between the TCGA domain descriptors and data elements. Furthermore, the use of the S3DB management model as a mediator enables queries to both public and protected data without the need for prior submission to a single data source.

Collaboration


Dive into the John N. Weinstein's collaboration.

Top Co-Authors

Avatar

Lixia Diao

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lauren Averett Byers

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jing Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rehan Akbani

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

John V. Heymach

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon B. Mills

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Luc Girard

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Minna

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge