Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rehan Akbani is active.

Publication


Featured researches published by Rehan Akbani.


Cell | 2016

Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma

Michele Ceccarelli; Floris P. Barthel; Tathiane Maistro Malta; Thais S. Sabedot; Sofie R. Salama; Bradley A. Murray; Olena Morozova; Yulia Newton; Amie Radenbaugh; Stefano Maria Pagnotta; Samreen Anjum; Jiguang Wang; Ganiraju C. Manyam; Pietro Zoppoli; Shiyun Ling; Arjun A. Rao; Mia Grifford; Andrew D. Cherniack; Hailei Zhang; Laila M. Poisson; Carlos Gilberto Carlotti; Daniela Tirapelli; Arvind Rao; Tom Mikkelsen; Ching C. Lau; W. K. Alfred Yung; Raul Rabadan; Jason T. Huse; Daniel J. Brat; Norman L. Lehman

Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.


Nature Communications | 2013

Tumour angiogenesis regulation by the miR-200 family

Chad V. Pecot; Rajesha Rupaimoole; Da Yang; Rehan Akbani; Cristina Ivan; Chunhua Lu; Sherry Y. Wu; Hee Dong Han; Maitri Y. Shah; Cristian Rodriguez-Aguayo; Justin Bottsford-Miller; Yuexin Liu; Sang Bae Kim; Anna K. Unruh; Vianey Gonzalez-Villasana; Li Huang; Behrouz Zand; Myrthala Moreno-Smith; Lingegowda S. Mangala; Morgan Taylor; Heather J. Dalton; Vasudha Sehgal; Yunfei Wen; Yu Kang; Keith A. Baggerly; Ju Seog Lee; Prahlad T. Ram; Murali Ravoori; Vikas Kundra; Xinna Zhang

The miR-200 family is well known to inhibit the epithelial-mesenchymal transition, suggesting it may therapeutically inhibit metastatic biology. However, conflicting reports regarding the role of miR-200 in suppressing or promoting metastasis in different cancer types have left unanswered questions. Here we demonstrate a difference in clinical outcome based on miR-200s role in blocking tumour angiogenesis. We demonstrate that miR-200 inhibits angiogenesis through direct and indirect mechanisms by targeting interleukin-8 and CXCL1 secreted by the tumour endothelial and cancer cells. Using several experimental models, we demonstrate the therapeutic potential of miR-200 delivery in ovarian, lung, renal and basal-like breast cancers by inhibiting angiogenesis. Delivery of miR-200 members into the tumour endothelium resulted in marked reductions in metastasis and angiogenesis, and induced vascular normalization. The role of miR-200 in blocking cancer angiogenesis in a cancer-dependent context defines its utility as a potential therapeutic agent.


Nature Communications | 2014

A pan-cancer proteomic perspective on The Cancer Genome Atlas

Rehan Akbani; Patrick Kwok Shing Ng; Henrica Maria Johanna Werner; Maria Shahmoradgoli; Fan Zhang; Zhenlin Ju; Wenbin Liu; Ji Yeon Yang; Kosuke Yoshihara; Jun Li; Shiyun Ling; Elena G. Seviour; Prahlad T. Ram; John D. Minna; Lixia Diao; Pan Tong; John V. Heymach; Steven M. Hill; Frank Dondelinger; Nicolas Städler; Lauren Averett Byers; Funda Meric-Bernstam; John N. Weinstein; Bradley M. Broom; Roeland Verhaak; Han Liang; Sach Mukherjee; Yiling Lu; Gordon B. Mills

Protein levels and function are poorly predicted by genomic and transcriptomic analysis of patient tumors. Therefore, direct study of the functional proteome has the potential to provide a wealth of information that complements and extends genomic, epigenomic and transcriptomic analysis in The Cancer Genome Atlas (TCGA) projects. Here we use reverse-phase protein arrays to analyze 3,467 patient samples from 11 TCGA “Pan-Cancer” diseases, using 181 high-quality antibodies that target 128 total proteins and 53 post-translationally modified proteins. The resultant proteomic data is integrated with genomic and transcriptomic analyses of the same samples to identify commonalities, differences, emergent pathways and network biology within and across tumor lineages. In addition, tissue-specific signals are reduced computationally to enhance biomarker and target discovery spanning multiple tumor lineages. This integrative analysis, with an emphasis on pathways and potentially actionable proteins, provides a framework for determining the prognostic, predictive and therapeutic relevance of the functional proteome.


Nature Genetics | 2016

Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas

Joshua D. Campbell; Anton Alexandrov; Jaegil Kim; Jeremiah Wala; Alice H. Berger; Chandra Sekhar Pedamallu; Sachet A. Shukla; Guangwu Guo; Angela N. Brooks; Bradley A. Murray; Marcin Imielinski; Xin Hu; Shiyun Ling; Rehan Akbani; Mara Rosenberg; Carrie Cibulskis; Eric A. Collisson; David J. Kwiatkowski; Michael S. Lawrence; John N. Weinstein; Roel G.W. Verhaak; Catherine J. Wu; Peter S. Hammerman; Andrew D. Cherniack; Gad Getz; Maxim N. Artyomov; Robert D. Schreiber; Ramaswamy Govindan; Matthew Meyerson

To compare lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC) and to identify new drivers of lung carcinogenesis, we examined the exome sequences and copy number profiles of 660 lung ADC and 484 lung SqCC tumor–normal pairs. Recurrent alterations in lung SqCCs were more similar to those of other squamous carcinomas than to alterations in lung ADCs. New significantly mutated genes included PPP3CA, DOT1L, and FTSJD1 in lung ADC, RASA1 in lung SqCC, and KLF5, EP300, and CREBBP in both tumor types. New amplification peaks encompassed MIR21 in lung ADC, MIR205 in lung SqCC, and MAPK1 in both. Lung ADCs lacking receptor tyrosine kinase–Ras–Raf pathway alterations had mutations in SOS1, VAV1, RASA1, and ARHGAP35. Regarding neoantigens, 47% of the lung ADC and 53% of the lung SqCC tumors had at least five predicted neoepitopes. Although targeted therapies for lung ADC and SqCC are largely distinct, immunotherapies may aid in treatment for both subtypes.


Nature Methods | 2013

TCPA: a resource for cancer functional proteomics data

Jun Li; Yiling Lu; Rehan Akbani; Zhenlin Ju; Paul Roebuck; Wenbin Liu; Ji Yeon Yang; Bradley M. Broom; Roeland Verhaak; David Kane; Chris Wakefield; John N. Weinstein; Gordon B. Mills; Han Liang

To the Editor: Functional proteomics represents a powerful approach to understand the pathophysiology and therapy of cancer. However, comprehensive cancer proteomic data have been relatively limited. As a part of The Cancer Genome Atlas (TCGA) Project and other efforts, we have generated protein expression data over a large number of tumor and cell line samples using reverse-phase protein arrays (RPPAs). RPPA is a quantitative, antibody-based technology that can assess multiple protein markers in many samples in a cost-effective, sensitive and highthroughput manner1,2. This technology has been extensively validated for both cell line and patient samples3–5, and its applications range from building reproducible prognostic models6 to generating experimentally verified mechanistic insights7. Our RPPA profiling platform includes extensively validated antibodies to nearly 200 proteins and phosphoproteins (Supplementary Methods and Supplementary Table 1). We are in the process of extending it to 500 independent proteins, covering all major signaling pathways, including PI3K, MAPK, mTOR, TGF-b, WNT, cell cycle, apoptosis, DNA damage, Hippo and Notch pathways. The current data release covers 4,379 tumor samples and consists of three parts (Supplementary Table 2). These are (i) TCGA tumor tissue sample sets: 3,467 samples from 11 cancer types, to be extended to 25 cancer types; (ii) independent tumor tissue sample sets: one endometrial tumor set (244 samples)7 and two ovarian tumor sets (99 and 130 samples, respectively)6, with other independent sets to be added soon; and (iii) tumor cell lines: 439 samples in four cell line sets, including both baseline and drug-treated cell lines. To our knowledge, this represents the largest publicly available collection of cancer functional proteomics data with parallel DNA and RNA data. To facilitate broad access to these RPPA data sets, we developed a user-friendly data portal, The Cancer Proteome Atlas (TCPA; http://bioinformatics.mdanderson.org/main/ TCPA:Overview). TCPA provides six modules: Summary, My Protein, Download, Visualization, Analysis and Cell Line (Fig. 1, i). The Summary module provides an overview of the RPPA data with detailed descriptions of each set (Fig. 1, ii). The Download module allows users to obtain any RPPA data set for analysis through a tree-view interface (Fig. 1, iii). The My Protein module provides detailed information about each RPPA protein: protein name, corresponding gene symbol, antibody status and source for the antibody. Users can examine the expression pattern of a protein of interest across different tumor types (for example, HER2 expression shown in Fig. 1, iv). The Visualization module provides two ways to examine global protein expression patterns in a specific RPPA data set . One is through a “next-generation clustered heat map” (Fig. 1, v), which allows users to zoom, navigate and scrutinize clustering patterns of samples or proteins and link those patterns to relevant biological information sources. The other is through a network view (Fig. 1, vi), which overlays the correlation between any two interacting partners in the protein interaction network (curated in the Human Protein Reference Database8). The Analysis module provides three analysis methods. (i) For correlation analysis, given a user-specified data set, correlations between any pair of proteins are presented in a table (Fig. 1, vii). Users can search the results by protein name, rank correlations or visualize the scatter plot of a correlation of interest (for example, there is a strong correlation between PKC-a and its phosphorylated form PKC-a_pS657 in endometrial cancer, as shown in Fig. 1, vii). (ii) For differential analysis, differentially expressed protein markers between two tumor types or subtypes can be identified. Given user-defined comparison groups, the Krzywinski and Cairo reply: We are in full agreement with the core of Katz’s argument that “distortion,” “embellishment,” “concealment” and “unrepresentative displays” have no place in principled communication of scientific information1. There is no controversy here—Katz extrapolates our storytelling metaphor beyond the intended scope of our column and argues against a position we did not take. The Points of View series offers effective strategies for visual presentation of complex data. The scope of the Storytelling column2 was limited to the construction of multipanel figures, which summarize as much as they support detailed exposition of the text. The column did not address how this text should be composed or the broad subject of motivation and design of scientific experiments. We described an approach to structure the flow of concepts and data across panels in a figure as a way to achieve a narrative, not confabulation. The design of visual communication requires a distinct approach because we organize and interpret images very differently than words (Gestalt principles of perception3). Whereas text is a natural place for nuance and alternative interpretations, multiple lines of argument in a figure can easily interfere with our perception of all its parts. Our suggestion to “leave out detail that does not advance the plot” speaks to controlling the amount of information to avoid an incomprehensible image and deferring it to the text, where it can be more suitably framed. To interpret it as “inconvenient truths are [to be] swept away” is a misrepresentation. Readers often look to the abstract and then the figures to provide them with an initial impression and overview of the findings. These are not the only elements that are reported, merely the first elements to be read. At each step, from abstract to figure to text, the level of detail is expanded to accommodate the preparedness of the reader to assimilate new information. It is often impossible to “do justice to experimental complexities and their myriad of interpretations” with a figure. We support Katz’s position that authors should include all the details necessary to appreciate, understand and reproduce the science through the use of visual and written communication that is clear, concise and thoughtful.


Cancer Cell | 2016

Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma

Siyuan Zheng; Andrew D. Cherniack; Ninad Dewal; Richard A. Moffitt; Ludmila Danilova; Bradley A. Murray; Antonio M. Lerario; Tobias Else; Theo Knijnenburg; Giovanni Ciriello; Seungchan Kim; Guillaume Assié; Olena Morozova; Rehan Akbani; Juliann Shih; Katherine A. Hoadley; Toni K. Choueiri; Jens Waldmann; Ozgur Mete; Robertson Ag; Hsin-Ta Wu; Benjamin J. Raphael; Shao L; Matthew Meyerson; Michael J. Demeure; Felix Beuschlein; Anthony J. Gill; Stan B. Sidhu; Madson Q. Almeida; Maria Candida Barisson Villares Fragoso

We describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers.


Cell Reports | 2016

Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma

Fengju Chen; Yiqun Zhang; Yasin Şenbabaoğlu; Giovanni Ciriello; Lixing Yang; Ed Reznik; Brian Shuch; Goran Micevic; Guillermo Velasco; Eve Shinbrot; Michael S. Noble; Yiling Lu; Kyle Covington; Liu Xi; Jennifer Drummond; Donna M. Muzny; Hyojin Kang; Junehawk Lee; Pheroze Tamboli; Victor E. Reuter; Carl Simon Shelley; Benny Abraham Kaipparettu; Donald P. Bottaro; Andrew K. Godwin; Richard A. Gibbs; Gad Getz; Raju Kucherlapati; Peter J. Park; Chris Sander; Elizabeth P. Henske

On the basis of multidimensional and comprehensive molecular characterization (including DNA methalylation and copy number, RNA, and protein expression), we classified 894 renal cell carcinomas (RCCs) of various histologic types into nine major genomic subtypes. Site of origin within the nephron was one major determinant in the classification, reflecting differences among clear cell, chromophobe, and papillary RCC. Widespread molecular changes associated with TFE3 gene fusion or chromatin modifier genes were present within a specific subtype and spanned multiple subtypes. Differences in patient survival and in alteration of specific pathways (including hypoxia, metabolism, MAP kinase, NRF2-ARE, Hippo, immune checkpoint, and PI3K/AKT/mTOR) could further distinguish the subtypes. Immune checkpoint markers and molecular signatures of T cell infiltrates were both highest in the subtype associated with aggressive clear cell RCC. Differences between the genomic subtypes suggest that therapeutic strategies could be tailored to each RCC disease subset.


Molecular & Cellular Proteomics | 2014

Realizing the Promise of Reverse Phase Protein Arrays for Clinical, Translational, and Basic Research: A Workshop Report The RPPA (Reverse Phase Protein Array) Society

Rehan Akbani; Karl-Friedrich Becker; Neil O. Carragher; Theodore C. Goldstein; Leanne De Koning; Ulrike Korf; Lance A. Liotta; Gordon B. Mills; Satoshi Nishizuka; Michael Pawlak; Emanuel F. Petricoin; Harvey B. Pollard; Bryan Serrels; Jingchun Zhu

Reverse phase protein array (RPPA) technology introduced a miniaturized “antigen-down” or “dot-blot” immunoassay suitable for quantifying the relative, semi-quantitative or quantitative (if a well-accepted reference standard exists) abundance of total protein levels and post-translational modifications across a variety of biological samples including cultured cells, tissues, and body fluids. The recent evolution of RPPA combined with more sophisticated sample handling, optical detection, quality control, and better quality affinity reagents provides exquisite sensitivity and high sample throughput at a reasonable cost per sample. This facilitates large-scale multiplex analysis of multiple post-translational markers across samples from in vitro, preclinical, or clinical samples. The technical power of RPPA is stimulating the application and widespread adoption of RPPA methods within academic, clinical, and industrial research laboratories. Advances in RPPA technology now offer scientists the opportunity to quantify protein analytes with high precision, sensitivity, throughput, and robustness. As a result, adopters of RPPA technology have recognized critical success factors for useful and maximum exploitation of RPPA technologies, including the following: preservation and optimization of pre-analytical sample quality, application of validated high-affinity and specific antibody (or other protein affinity) detection reagents, dedicated informatics solutions to ensure accurate and robust quantification of protein analytes, and quality-assured procedures and data analysis workflows compatible with application within regulated clinical environments. In 2011, 2012, and 2013, the first three Global RPPA workshops were held in the United States, Europe, and Japan, respectively. These workshops provided an opportunity for RPPA laboratories, vendors, and users to share and discuss results, the latest technology platforms, best practices, and future challenges and opportunities. The outcomes of the workshops included a number of key opportunities to advance the RPPA field and provide added benefit to existing and future participants in the RPPA research community. The purpose of this report is to share and disseminate, as a community, current knowledge and future directions of the RPPA technology.


Cell Reports | 2017

Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

Farshad Farshidfar; Siyuan Zheng; Marie-Claude Gingras; Yulia Newton; Juliann Shih; A. Gordon Robertson; Toshinori Hinoue; Katherine A. Hoadley; Ewan A. Gibb; Jason Roszik; Kyle Covington; Chia Chin Wu; Eve Shinbrot; Nicolas Stransky; Apurva M. Hegde; Ju Dong Yang; Ed Reznik; Sara Sadeghi; Chandra Sekhar Pedamallu; Akinyemi I. Ojesina; Julian Hess; J. Todd Auman; Suhn Kyong Rhie; Reanne Bowlby; Mitesh J. Borad; Andrew X. Zhu; Josh Stuart; Chris Sander; Rehan Akbani; Andrew D. Cherniack

Summary Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.


Clinical Cancer Research | 2015

Invasive Bladder Cancer: Genomic Insights and Therapeutic Promise.

Jaegil Kim; Rehan Akbani; Chad J. Creighton; Seth P. Lerner; John N. Weinstein; Gad Getz; David J. Kwiatkowski

Invasive bladder cancer, for which there have been few therapeutic advances in the past 20 years, is a significant medical problem associated with metastatic disease and frequent mortality. Although previous studies had identified many genetic alterations in invasive bladder cancer, recent genome-wide studies have provided a more comprehensive view. Here, we review those recent findings and suggest therapeutic strategies. Bladder cancer has a high mutation rate, exceeded only by lung cancer and melanoma. About 65% of all mutations are due to APOBEC-mediated mutagenesis. There is a high frequency of mutations and/or genomic amplification or deletion events that affect many of the canonical signaling pathways involved in cancer development: cell cycle, receptor tyrosine kinase, RAS, and PI-3-kinase/mTOR. In addition, mutations in chromatin-modifying genes are unusually frequent in comparison with other cancers, and mutation or amplification of transcription factors is also common. Expression clustering analyses organize bladder cancers into four principal groups, which can be characterized as luminal, immune undifferentiated, luminal immune, and basal. The four groups show markedly different expression patterns for urothelial differentiation (keratins and uroplakins) and immunity genes (CD274 and CTLA4), among others. These observations suggest numerous therapeutic opportunities, including kinase inhibitors and antibody therapies for genes in the canonical signaling pathways, histone deacetylase inhibitors and novel molecules for chromatin gene mutations, and immune therapies, which should be targeted to specific patients based on genomic profiling of their cancers. Clin Cancer Res; 21(20); 4514–24. ©2015 AACR.

Collaboration


Dive into the Rehan Akbani's collaboration.

Top Co-Authors

Avatar

John N. Weinstein

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gordon B. Mills

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jian Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Bibhuti Mishra

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Katherine A. Hoadley

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Lopa Mishra

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Wilma Jogunoori

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Yiling Lu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoping Su

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge