John P. DeLong
University of Nebraska–Lincoln
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John P. DeLong.
Proceedings of the Royal Society of London B: Biological Sciences | 2014
David A. Vasseur; John P. DeLong; Benjamin Gilbert; Hamish S. Greig; Christopher D. G. Harley; Kevin S. McCann; Van M. Savage; Tyler D. Tunney; Mary I. O'Connor
Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change. Here, we couple fine-grained climate projections (2050–2059) to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model. We show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert. Although most species show increases in performance at greater mean temperatures, the effect of mean and variance change together yields a range of responses, with temperate species at greatest risk of performance declines. Our work highlights the importance of using fine-grained temporal data to incorporate the full extent of temperature variation when assessing and projecting performance.
Proceedings of the National Academy of Sciences of the United States of America | 2010
John P. DeLong; Jordan G. Okie; Melanie E. Moses; Richard M. Sibly; James H. Brown
The diversification of life involved enormous increases in size and complexity. The evolutionary transitions from prokaryotes to unicellular eukaryotes to metazoans were accompanied by major innovations in metabolic design. Here we show that the scalings of metabolic rate, population growth rate, and production efficiency with body size have changed across the evolutionary transitions. Metabolic rate scales with body mass superlinearly in prokaryotes, linearly in protists, and sublinearly in metazoans, so Kleiber’s 3/4 power scaling law does not apply universally across organisms. The scaling of maximum population growth rate shifts from positive in prokaryotes to negative in protists and metazoans, and the efficiency of production declines across these groups. Major changes in metabolic processes during the early evolution of life overcame existing constraints, exploited new opportunities, and imposed new constraints.
BioScience | 2011
James H. Brown; William R. Burnside; Ana D. Davidson; John P. DeLong; William C. Dunn; Marcus J. Hamilton; Norman Mercado-Silva; Jeffrey C. Nekola; Jordan G. Okie; William H. Woodruff; Wenyun Zuo
The human population and economy have grown exponentially and now have impacts on climate, ecosystem processes, and biodiversity far exceeding those of any other species. Like all organisms, humans are subject to natural laws and are limited by energy and other resources. In this article, we use a macro ecological approach to integrate perspectives of physics, ecology, and economics with an analysis of extensive global data to show how energy imposes fundamental constraints on economic growth and development. We demonstrate a positive scaling relationship between per capita energy use and per capita gross domestic product (GDP) both across nations and within nations over time. Other indicators of socioeconomic status and ecological impactare correlated with energy use and GDP. We estimate global energy consumption for alternative future scenarios of population growth and standards of living. Large amounts of energy will be required to fuel economic growth, increase standards of living, and lift developing nations out of poverty.
Ecology Letters | 2014
Benjamin Gilbert; Tyler D. Tunney; Kevin S. McCann; John P. DeLong; David A. Vasseur; Van M. Savage; Jonathan B. Shurin; Anthony I. Dell; Brandon T. Barton; Christopher D. G. Harley; Heather M. Kharouba; Pavel Kratina; Julia L. Blanchard; Christopher F. Clements; Monika Winder; Hamish S. Greig; Mary I. O'Connor
Changing temperature can substantially shift ecological communities by altering the strength and stability of trophic interactions. Because many ecological rates are constrained by temperature, new approaches are required to understand how simultaneous changes in multiple rates alter the relative performance of species and their trophic interactions. We develop an energetic approach to identify the relationship between biomass fluxes and standing biomass across trophic levels. Our approach links ecological rates and trophic dynamics to measure temperature-dependent changes to the strength of trophic interactions and determine how these changes alter food web stability. It accomplishes this by using biomass as a common energetic currency and isolating three temperature-dependent processes that are common to all consumer-resource interactions: biomass accumulation of the resource, resource consumption and consumer mortality. Using this framework, we clarify when and how temperature alters consumer to resource biomass ratios, equilibrium resilience, consumer variability, extinction risk and transient vs. equilibrium dynamics. Finally, we characterise key asymmetries in species responses to temperature that produce these distinct dynamic behaviours and identify when they are likely to emerge. Overall, our framework provides a mechanistic and more unified understanding of the temperature dependence of trophic dynamics in terms of ecological rates, biomass ratios and stability.
BMC Ecology | 2011
John P. DeLong; David A. Vasseur
BackgroundInterference competition occurs when access to resources is negatively affected by the presence of other individuals. Within a species or population, this is known as mutual interference, and it is often modelled with a scaling exponent, m, on the number of predators. Originally, mutual interference was thought to vary along a continuum from prey dependence (no interference; m = 0) to ratio dependence (m = -1), but a debate in the 1990s and early 2000s focused on whether prey or ratio dependence was the better simplification. Some have argued more recently that mutual interference is likely to be mostly intermediate (that is, between prey and ratio dependence), but this possibility has not been evaluated empirically.ResultsWe gathered estimates of mutual interference from the literature, analyzed additional data, and created the largest compilation of unbiased estimates of mutual interference yet produced. In this data set, both the alternatives of prey dependence and ratio dependence were observed, but only one data set was consistent with prey dependence. There was a tendency toward ratio dependence reflected by a median m of -0.7 and a mean m of -0.8.ConclusionsOverall, the data support the hypothesis that interference is mostly intermediate in magnitude. The data also indicate that interference competition is common, at least in the systems studied to date. Significant questions remain regarding how different factors influence interference, and whether interference can be viewed as a characteristic of a particular population or whether it generally shifts from low to high levels as populations increase in density.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Matthew R. Walsh; John P. DeLong; Torrance C. Hanley; David M. Post
It is becoming increasingly clear that intraspecific evolutionary divergence influences the properties of populations, communities and ecosystems. The different ecological impacts of phenotypes and genotypes may alter selection on many species and promote a cascade of ecological and evolutionary change throughout the food web. Theory predicts that evolutionary interactions across trophic levels may contribute to hypothesized feedbacks between ecology and evolution. However, the importance of ‘cascading evolutionary change’ in a natural setting is unknown. In lakes in Connecticut, USA, variation in migratory behaviour and feeding morphology of a fish predator, the alewife (Alosa pseudoharengus), drives life-history evolution in a species of zooplankton prey (Daphnia ambigua). Here we evaluated the reciprocal impacts of Daphnia evolution on ecological processes in laboratory mesocosms. We show that life-history evolution in Daphnia facilitates divergence in rates of population growth, which in turn significantly alters consumer-resource dynamics and ecosystem function. These experimental results parallel trends observed in lakes. Such results argue that a cascade of evolutionary change, which has occurred over contemporary timescales, alters community and ecosystem processes.
Ecology | 2013
Frank A. La Sorte; Daniel Fink; Wesley M. Hochachka; John P. DeLong; Steve Kelling
Optimal migration theory suggests specific scaling relationships between body size and migration speed for individual birds based on the minimization of time, energy, and risk. Here we test if the quantitative predictions originating from this theory can be detected when migration decisions are integrated across individuals. We estimated population-level migration trajectories and daily migration speeds for the combined period 2007-2011 using the eBird data set. We considered 102 North American bird species that use flapping or powered flight during migration. Many species, especially in eastern North America, had looped migration trajectories that traced a clockwise path with an eastward shift during autumn migration. Population-level migration speeds decelerated rapidly going into the breeding season, and accelerated more slowly during the transition to autumn migration. In accordance with time minimization predictions, spring migration speeds were faster than autumn migration speeds. In agreement with optimality predictions, migration speeds of powered flyers scaled negatively with body mass similarly during spring and autumn migration. Powered fliers with longer migration journeys also had faster migration speeds, a relationship that was more pronounced during spring migration. Our findings indicate that powered fliers employed a migration strategy that, when examined at the population level, was in compliance with optimality predictions. These results suggest that the integration of migration decisions across individuals does result in population-level patterns that agree with theoretical expectations developed at the individual level, indicating a role for optimal migration theory in describing the mechanisms underlying broadscale patterns of avian migration for species that use powered flight.
The American Naturalist | 2015
John P. DeLong; Benjamin Gilbert; Jonathan B. Shurin; Van M. Savage; Brandon T. Barton; Christopher F. Clements; Anthony I. Dell; Hamish S. Greig; Christopher D. G. Harley; Pavel Kratina; Kevin S. McCann; Tyler D. Tunney; David A. Vasseur; Mary I. O’Connor
Trophic cascades are indirect positive effects of predators on resources via control of intermediate consumers. Larger-bodied predators appear to induce stronger trophic cascades (a greater rebound of resource density toward carrying capacity), but how this happens is unknown because we lack a clear depiction of how the strength of trophic cascades is determined. Using consumer resource models, we first show that the strength of a trophic cascade has an upper limit set by the interaction strength between the basal trophic group and its consumer and that this limit is approached as the interaction strength between the consumer and its predator increases. We then express the strength of a trophic cascade explicitly in terms of predator body size and use two independent parameter sets to calculate how the strength of a trophic cascade depends on predator size. Both parameter sets predict a positive effect of predator size on the strength of a trophic cascade, driven mostly by the body size dependence of the interaction strength between the first two trophic levels. Our results support previous empirical findings and suggest that the loss of larger predators will have greater consequences on trophic control and biomass structure in food webs than the loss of smaller predators.
Proceedings of the Royal Society B: Biological Sciences | 2014
Frank A. La Sorte; Daniel Fink; Wesley M. Hochachka; John P. DeLong; Steve Kelling
Migration is a common strategy used by birds that breed in seasonal environments. The patterns and determinants of migration routes, however, remain poorly understood. Recent empirical analyses have demonstrated that the locations of two North America migration flyways (eastern and western) shift seasonally, reflecting the influence of looped migration strategies. For the eastern but not western flyway, seasonal variation in atmospheric circulation has been identified as an explanation. Here, we test an alternative explanation based on the phenology of ecological productivity, which may be of greater relevance in western North America, where phenology is more broadly dictated by elevation. Migrants in the western flyway selected lower-elevation spring routes that were wetter, greener and more productive, and higher-elevation autumn routes that were less green and less productive, but probably more direct. Migrants in the eastern flyway showed little season variation but maintained associations with maximum regional greenness. Our findings suggest the annual phenology of ecological productivity is associated with en route timing in both flyways, and the spring phenology of ecological productivity contributes to the use of looped strategies in the western flyway. This fine-tuned spatial synchronization may be disrupted when changing climate induces a mismatch between food availability and needs.
Journal of Animal Ecology | 2014
John P. DeLong; Torrance C. Hanley; David A. Vasseur
Although mass and temperature are strong predictors of metabolic rates, there is considerable unexplained variation in metabolic rates both within and across species after body size and temperature are taken into account. Some of this variation may be due to changes in the rate of food intake with population density, as metabolism depends on the throughput of food to fuel biochemical reactions. Using data collected from the literature, we show that individual metabolic rates are negatively correlated with population density for a wide range of organisms including primary producers and consumers. Using new data for the zooplankter Daphnia ambigua, we also find genotypic variation in the relationship between metabolic rate and population density. The relationship between metabolic rate and population density generally follows a power law scaling, and within a population, density-correlated variation in metabolism can span two orders of magnitude. We suggest that density-dependent metabolic rates arise via competitive effects on foraging rates (both exploitation and interference competition), combined with an activity response to accommodate the resource constraint induced by competition. Standard ecological models predict the kind of density-dependent foraging patterns that could give rise to density-dependent metabolic rates, but this has generally not been investigated. Our results indicate that after body mass and temperature, population density represents an important third axis that may account for a large amount of unexplained variance in metabolic rates within and among species. The effect of population density on metabolism has implications for the scaling of metabolic rates from individuals to populations and the relative performance of species and genotypes and therefore also for community assembly and evolution.