Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John P. Mallamo is active.

Publication


Featured researches published by John P. Mallamo.


Journal of Medicinal Chemistry | 2008

Discovery of a Potent, Selective, and Orally Active Proteasome Inhibitor for the Treatment of Cancer

Bruce D. Dorsey; Mohamed Iqbal; Sankar Chatterjee; Ernesto Menta; Raffaella Bernardini; Alberto Bernareggi; Paolo G Cassara; Germano D’Arasmo; Edmondo Ferretti; Sergio De Munari; Ambrogio Oliva; Gabriella Pezzoni; Cecilia Allievi; Ivan Strepponi; Bruce Ruggeri; Mark A. Ator; Michael T. Williams; John P. Mallamo

The ubiquitin-proteasome pathway plays a central role in regulation of the production and destruction of cellular proteins. These pathways mediate proliferation and cell survival, particularly in malignant cells. The successful development of the 20S human proteasome inhibitor bortezomib for the treatment of relapsed and refractory multiple myeloma has established this targeted intervention as an effective therapeutic strategy. Herein, the potent, selective, and orally bioavailable threonine-derived 20S human proteasome inhibitor that has been advanced to preclinical development, [(1R)-1-[[(2 S,3 R)-3-hydroxy-2-[(6-phenylpyridine-2-carbonyl)amino]-1-oxobutyl]amino]-3-methylbutyl]boronic acid 20 (CEP-18770), is disclosed.


Journal of Medicinal Chemistry | 2011

Discovery and Characterization of 6-{4-[3-(R)-2-Methylpyrrolidin-1-yl)propoxy]phenyl}-2H-pyridazin-3-one (CEP-26401, Irdabisant): A Potent, Selective Histamine H3 Receptor Inverse Agonist

Robert L. Hudkins; Rita Raddatz; Ming Tao; Joanne R. Mathiasen; Lisa D. Aimone; Nadine C. Becknell; Catherine Prouty; Lars Jacob Stray Knutsen; Mehran Yazdanian; Gilbert Moachon; Mark A. Ator; John P. Mallamo; Michael J. Marino; Edward R. Bacon; Michael T. Williams

Optimization of a novel series of pyridazin-3-one histamine H(3) receptor (H(3)R) antagonists/inverse agonists identified 6-{4-[3-(R)-2-methylpyrrolidin-1-yl)propoxy]phenyl}-2H-pyridazin-3-one (8a, CEP-26401; irdabisant) as a lead candidate for potential use in the treatment of attentional and cognitive disorders. 8a had high affinity for both human (K(i) = 2.0 nM) and rat (K(i) = 7.2 nM) H(3)Rs with greater than 1000-fold selectivity over the hH(1)R, hH(2)R, and hH(4)R histamine receptor subtypes and against an in vitro panel of 418 G-protein-coupled receptors, ion channels, transporters, and enzymes. 8a demonstrated ideal pharmaceutical properties for a CNS drug in regard to water solubility, permeability and lipophilicity and had low binding to human plasma proteins. It weakly inhibited recombinant cytochrome P450 isoforms and human ether-a-go-go-related gene. 8a metabolism was minimal in rat, mouse, dog, and human liver microsomes, and it had good interspecies pharmacokinetic properties. 8a dose-dependently inhibited H(3)R agonist-induced dipsogenia in the rat (ED(50) = 0.06 mg/kg po). On the basis of its pharmacological, pharmaceutical, and safety profiles, 8a was selected for preclinical development. The clinical portions of the single and multiple ascending dose studies assessing safety and pharmacokinetics have been completed allowing for the initiation of a phase IIa for proof of concept.


Journal of Pharmacology and Experimental Therapeutics | 2012

CEP-26401 (Irdabisant), a Potent and Selective Histamine H3 Receptor Antagonist/Inverse Agonist with Cognition-Enhancing and Wake-Promoting Activities

Rita Raddatz; Robert L. Hudkins; Joanne R. Mathiasen; John A. Gruner; Dorothy G. Flood; Lisa D. Aimone; Siyuan Le; Hervé Schaffhauser; Emir Duzic; Maciej Gasior; Donna Bozyczko-Coyne; Michael J. Marino; Mark A. Ator; Edward R. Bacon; John P. Mallamo; Michael T. Williams

CEP-26401 [irdabisant; 6-{4-[3-((R)-2-methyl-pyrrolidin-1-yl)-propoxy]-phenyl}-2H-pyridazin-3-one HCl] is a novel, potent histamine H3 receptor (H3R) antagonist/inverse agonist with drug-like properties. High affinity of CEP-26401 for H3R was demonstrated in radioligand binding displacement assays in rat brain membranes (Ki = 2.7 ± 0.3 nM) and recombinant rat and human H3R-expressing systems (Ki = 7.2 ± 0.4 and 2.0 ± 1.0 nM, respectively). CEP-26401 displayed potent antagonist and inverse agonist activities in [35S]guanosine 5′-O-(γ-thio)triphosphate binding assays. After oral dosing of CEP-26401, occupancy of H3R was estimated by the inhibition of ex vivo binding in rat cortical slices (OCC50 = 0.1 ± 0.003 mg/kg), and antagonism of the H3R agonist R-α-methylhistamine- induced drinking response in the rat dipsogenia model was demonstrated in a similar dose range (ED50 = 0.06 mg/kg). CEP-26401 improved performance in the rat social recognition model of short-term memory at doses of 0.01 to 0.1 mg/kg p.o. and was wake-promoting at 3 to 30 mg/kg p.o. In DBA/2NCrl mice, CEP-26401 at 10 and 30 mg/kg i.p. increased prepulse inhibition (PPI), whereas the antipsychotic risperidone was effective at 0.3 and 1 mg/kg i.p. Coadministration of CEP-26401 and risperidone at subefficacious doses (3 and 0.1 mg/kg i.p., respectively) increased PPI. These results demonstrate potent behavioral effects of CEP-26401 in rodent models and suggest that this novel H3R antagonist may have therapeutic utility in the treatment of cognitive and attentional disorders. CEP-26401 may also have therapeutic utility in treating schizophrenia or as adjunctive therapy to approved antipsychotics.


Journal of Medicinal Chemistry | 2012

Synthesis and Biological Profile of the pan-Vascular Endothelial Growth Factor Receptor/Tyrosine Kinase with Immunoglobulin and Epidermal Growth Factor-Like Homology Domains 2 (VEGF-R/TIE-2) Inhibitor 11-(2-Methylpropyl)-12,13-dihydro-2-methyl-8-(pyrimidin-2-ylamino)-4H-indazolo[5,4-a]pyrrolo[3,4-c]carbazol-4-one (CEP-11981): A Novel Oncology Therapeutic Agent

Robert L. Hudkins; Nadine C. Becknell; Allison L. Zulli; Ted L. Underiner; Thelma S. Angeles; Lisa D. Aimone; Mark S. Albom; Hong Chang; Sheila J. Miknyoczki; Kathryn Hunter; Susan Jones-Bolin; Hugh Zhao; Edward R. Bacon; John P. Mallamo; Mark A. Ator; Bruce Ruggeri

A substantial body of evidence supports the utility of antiangiogenesis inhibitors as a strategy to block or attenuate tumor-induced angiogenesis and inhibition of primary and metastatic tumor growth in a variety of solid and hematopoietic tumors. Given the requirement of tumors for different cytokine and growth factors at distinct stages of their growth and dissemination, optimal antiangiogenic therapy necessitates inhibition of multiple, complementary, and nonredundant angiogenic targets. 11-(2-Methylpropyl)-12,13-dihydro-2-methyl-8-(pyrimidin-2-ylamino)-4H-indazolo[5,4-a]pyrrolo[3,4-c]carbazol-4-one (11b, CEP-11981) is a potent orally active inhibitor of multiple targets (TIE-2, VEGF-R1, 2, and 3, and FGF-R1) having essential and nonredundant roles in tumor angiogenesis and vascular maintenance. Outlined in this article are the design strategy, synthesis, and biochemical and pharmacological profile for 11b, which completed Phase I clinical assessing safety and pharmacokinetics allowing for the initiation of proof of concept studies.


Journal of Medicinal Chemistry | 2008

Mixed-lineage kinase 1 and mixed-lineage kinase 3 subtype-selective dihydronaphthyl[3,4-a]pyrrolo[3,4-c]carbazole-5-ones: optimization, mixed-lineage kinase 1 crystallography, and oral in vivo activity in 1-methyl-4-phenyltetrahydropyridine models.

Robert L. Hudkins; James L. Diebold; Ming Tao; Kurt A. Josef; Chung Ho Park; Thelma S. Angeles; Lisa D. Aimone; Jean Husten; Mark A. Ator; Sheryl L. Meyer; Beverly P. Holskin; John T. Durkin; Alexander A. Fedorov; Elena V. Fedorov; Steven C. Almo; Joanne R. Mathiasen; Donna Bozyczko-Coyne; Michael S. Saporito; Richard W. Scott; John P. Mallamo

The optimization of the dihydronaphthyl[3,4-a]pyrrolo[3,4-c]carbazole-5-one R(2) and R(12) positions led to the identification of the first MLK1 and MLK3 subtype-selective inhibitors within the MLK family. Compounds 14 (CEP-5104) and 16 (CEP-6331) displayed good potency for MLK1 and MLK3 inhibition with a greater than 30- to 100-fold selectivity for related family members MLK2 and DLK. Compounds 14 and 16 were orally active in vivo in a mouse MPTP biochemical efficacy model that was comparable to the first-generation pan-MLK inhibitor 1 (CEP-1347). The MLK1 structure-activity relationships were supported by the first-reported X-ray crystal structure of MLK1 bound with 16.


Bioorganic & Medicinal Chemistry Letters | 1995

Synthesis and binding affinity of 2,3,3a,4,9,9a-hexahydro-9,4-(iminomethano)-1H-benz[f]indenes. Ligands for the PCP site of the NMDA receptor

Michael Reuman; John P. Mallamo; Diane L. DeHaven-Hudkins

A series of 2,3,3a,4,9,9a-hexahydro-9,4-(iminomethano)-1H-benz[f]indenes was prepared and their ability to displace [3H]TCP was measured. The 5-amino derivatives 5 and 12b were the most potent members of this series with Ki values of 14 nM and 8 nM respectively. The orientation of the cyclopentane ring was crucial for binding potency, with the endo isomer 12a >10 times more potent than the exo-isomer 13.


ACS Chemical Neuroscience | 2012

Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery

Arup K. Ghose; Torsten Herbertz; Robert L. Hudkins; Bruce D. Dorsey; John P. Mallamo


Cancer Research | 2003

CEP-7055 A Novel, Orally Active Pan Inhibitor of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases with Potent Antiangiogenic Activity and Antitumor Efficacy in Preclinical Models

Bruce Ruggeri; Jasbir Singh; Diane E. Gingrich; Thelma S. Angeles; Mark S. Albom; Hong Chang; Candy Robinson; Kathryn Hunter; Pawel Dobrzanski; Susan Jones-Bolin; Lisa D. Aimone; Andres J. Klein-Szanto; Jean Marc Herbert; Françoise Bono; Paul Schaeffer; Pierre Casellas; Bernard Bourie; Roberto Pili; John T. Isaacs; Mark A. Ator; Robert L. Hudkins; Jeffry L. Vaught; John P. Mallamo; Craig A. Dionne


Journal of Medicinal Chemistry | 1997

Neurotrophic 3,9-bis[(alkylthio)methyl]-and-bis(alkoxymethyl)-K-252a derivatives.

Masami Kaneko; Yutaka Saito; Hiromitsu Saito; Tadashi Matsumoto; Yuzuru Matsuda; Jeffry L. Vaught; Craig A. Dionne; Thelma S. Angeles; Marcie A. Glicksman; Nicola Neff; David P. Rotella; James C. Kauer; John P. Mallamo; Robert L. Hudkins; Chikara Murakata


Journal of Medicinal Chemistry | 1998

Novel Peptidyl Phosphorus Derivatives as Inhibitors of Human Calpain I

Ming Tao; Ron Bihovsky; Gregory J. Wells; John P. Mallamo

Collaboration


Dive into the John P. Mallamo's collaboration.

Top Co-Authors

Avatar

Sankar Chatterjee

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Philip M. Carabateas

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Ron Bihovsky

Bayer HealthCare Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Virendra Kumar

Banaras Hindu University

View shared research outputs
Top Co-Authors

Avatar

Guy D. Diana

Rensselaer Polytechnic Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge