Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John P. Toscano is active.

Publication


Featured researches published by John P. Toscano.


Circulation Research | 2007

Nitroxyl improves cellular heart function by directly enhancing cardiac sarcoplasmic reticulum Ca2+ cycling

Carlo G. Tocchetti; Wang Wang; Jeffrey P. Froehlich; Sabine Huke; Miguel A. Aon; Gerald M. Wilson; Giulietta Di Benedetto; Brian O'Rourke; Wei Dong Gao; David A. Wink; John P. Toscano; Manuela Zaccolo; Donald M. Bers; Héctor H. Valdivia; Heping Cheng; David A. Kass; Nazareno Paolocci

Heart failure remains a leading cause of morbidity and mortality worldwide. Although depressed pump function is common, development of effective therapies to stimulate contraction has proven difficult. This is thought to be attributable to their frequent reliance on cAMP stimulation to increase activator Ca2+. A potential alternative is nitroxyl (HNO), the 1-electron reduction product of nitric oxide (NO) that improves contraction and relaxation in normal and failing hearts in vivo. The mechanism for myocyte effects remains unknown. Here, we show that this activity results from a direct interaction of HNO with the sarcoplasmic reticulum Ca2+ pump and the ryanodine receptor 2, leading to increased Ca2+ uptake and release from the sarcoplasmic reticulum. HNO increases the open probability of isolated ryanodine-sensitive Ca2+-release channels and accelerates Ca2+ reuptake into isolated sarcoplasmic reticulum by stimulating ATP-dependent Ca2+ transport. Contraction improves with no net rise in diastolic calcium. These changes are not induced by NO, are fully reversible by addition of reducing agents (redox sensitive), and independent of both cAMP/protein kinase A and cGMP/protein kinase G signaling. Rather, the data support HNO/thiolate interactions that enhance the activity of intracellular Ca2+ cycling proteins. These findings suggest HNO donors are attractive candidates for the pharmacological treatment of heart failure.


Nature Neuroscience | 2014

Post-study caffeine administration enhances memory consolidation in humans

Daniel Borota; Elizabeth Murray; Gizem Keceli; Allen Chang; Joseph M Watabe; Maria Ly; John P. Toscano; Michael A. Yassa

It is currently not known whether caffeine has an enhancing effect on long-term memory in humans. We used post-study caffeine administration to test its effect on memory consolidation using a behavioral discrimination task. Caffeine enhanced performance 24 h after administration according to an inverted U-shaped dose-response curve; this effect was specific to consolidation and not retrieval. We conclude that caffeine enhanced consolidation of long-term memories in humans.


Biochemistry | 2008

Phospholamban thiols play a central role in activation of the cardiac muscle sarcoplasmic reticulum calcium pump by nitroxyl.

Jeffrey P. Froehlich; James E. Mahaney; Gizem Keceli; Christopher M. Pavlos; Russell Goldstein; Abiona J. Redwood; Carlota Sumbilla; Dong I. Lee; Carlo G. Tocchetti; David A. Kass; Nazareno Paolocci; John P. Toscano

Nitroxyl (HNO) donated by Angelis salt activates uptake of Ca(2+) by the cardiac SR Ca(2+) pump (SERCA2a). To determine whether HNO achieves this by a direct interaction with SERCA2a or its regulatory protein, phospholamban (PLN), we measured its effects on SERCA2a activation (as reflected in dephosphorylation) using insect cell microsomes expressing SERCA2a with or without PLN (wild-type and Cys --> Ala mutant). The results show that activation of SERCA2a dephosphorylation by HNO is PLN-dependent and that PLN thiols are targets for HNO. We conclude that HNO produces a disulfide bond that alters the conformation of PLN, relieving inhibition of the Ca(2+) pump.


Current Topics in Medicinal Chemistry | 2005

Donors of HNO.

Katrina M. Miranda; Herbert T. Nagasawa; John P. Toscano

Recent comparisons of the pharmacological effects of nitric oxide (NO) and nitroxyl (HNO) donors have demonstrated that the responses to these redox-related nitrogen oxides are nearly universally dissimilar. These analyses have suggested the existence of mutually exclusive signaling pathways as a result of discrete chemical interactions of HNO and NO with a variety of critical biomolecules. Although the mechanisms of action are currently unresolved, the pharmacological responses to HNO are promising for clinical treatment of cardiovascular diseases such as heart failure, myocardial infarction and stroke. This review provides a detailed discussion of the most commonly utilized donors of HNO as well as a guideline for the characterization of novel donors.


Physical Chemistry Chemical Physics | 2003

Matrix isolation, time-resolved IR, and computational study of the photochemistry of benzoyl azide

Elena A. Pritchina; Nina P. Gritsan; Alexander Maltsev; Thomas Bally; Thomas Autrey; Yonglin Liu; John P. Toscano

It was shown recently on the basis of DFT calculations (N. P. Gritsan and E. A. Pritchina, Mendeleev Commun., 2001, 11, 94) that the singlet states of aroylnitrenes undergo tremendous stabilization due to an extra N–O bonding interaction. To test experimentally the multiplicity and the structure of the lowest state of benzoylnitrenes we performed a study of their photochemistry in Ar matrices at 12 K. Formation of two species was observed on irradiation of benzoyl azide (1b) and its 4-acetyl derivative (1c). One of these species has an IR spectrum, which is consistent with that of isocyanate (2b,c). The IR and UV spectra of the second intermediate are in very good agreement with the calculated spectra of the singlet species (3b,c), whose structure is intermediate between that of a carbonylnitrene and an oxazirene. We further examined the photochemistry of benzoyl azide in solution at ambient temperatures by nanosecond time-resolved IR methods and obtained additional evidence for the singlet ground state of benzoylnitrene as well as insight into its reactivity in acetonitrile, cyclohexane, and dichloromethane. The above experiments were accompanied by quantum chemical calculations which included also a thorough investigation of the parent species, formylnitrene, at different levels of theory.


Journal of the American Chemical Society | 2012

Development of N-Substituted Hydroxylamines as Efficient Nitroxyl (HNO) Donors

Daryl A. Guthrie; Nam Y. Kim; Maxime A. Siegler; Cathy D. Moore; John P. Toscano

Due to its inherent reactivity, nitroxyl (HNO), must be generated in situ through the use of donor compounds, but very few physiologically useful HNO donors exist. Novel N-substituted hydroxylamines with carbon-based leaving groups have been synthesized, and their structures confirmed by X-ray crystallography. These compounds generate HNO under nonenzymatic, physiological conditions, with the rate and amount of HNO released being dependent mainly on the nature of the leaving group. A barbituric acid and a pyrazolone derivative have been developed as efficient HNO donors with half-lives at pH 7.4, 37 °C of 0.7 and 9.5 min, respectively.


Antioxidants & Redox Signaling | 2013

HNO Enhances SERCA2a activity and cardiomyocyte function by promoting redox-dependent phospholamban oligomerization

Vidhya Sivakumaran; Brian A. Stanley; Carlo G. Tocchetti; Jeff D. Ballin; Viviane Menezes Caceres; Lufang Zhou; Gizem Keceli; Peter P. Rainer; Dong I. Lee; Sabine Huke; Mark T. Ziolo; Evangelia G. Kranias; John P. Toscano; Gerald M. Wilson; Brian O'Rourke; David A. Kass; James E. Mahaney; Nazareno Paolocci

AIMS Nitroxyl (HNO) interacts with thiols to act as a redox-sensitive modulator of protein function. It enhances sarcoplasmic reticular Ca(2+) uptake and myofilament Ca(2+) sensitivity, improving cardiac contractility. This activity has led to clinical testing of HNO donors for heart failure. Here we tested whether HNO alters the inhibitory interaction between phospholamban (PLN) and the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) in a redox-dependent manner, improving Ca(2+) handling in isolated myocytes/hearts. RESULTS Ventriculocytes, sarcoplasmic reticulum (SR) vesicles, and whole hearts were isolated from control (wildtype [WT]) or PLN knockout (pln(-/-)) mice. Compared to WT, pln(-/-) myocytes displayed enhanced resting sarcomere shortening, peak Ca(2+) transient, and blunted β-adrenergic responsiveness. HNO stimulated shortening, relaxation, and Ca(2+) transient in WT cardiomyocytes, and evoked positive inotropy/lusitropy in intact hearts. These changes were markedly blunted in pln(-/-) cells/hearts. HNO enhanced SR Ca(2+) uptake in WT but not pln(-/-) SR-vesicles. Spectroscopic studies in insect cell microsomes expressing SERCA2a±PLN showed that HNO increased Ca(2+)-dependent SERCA2a conformational flexibility but only when PLN was present. In cardiomyocytes, HNO achieved this effect by stabilizing PLN in an oligomeric disulfide bond-dependent configuration, decreasing the amount of free inhibitory monomeric PLN available. INNOVATION HNO-dependent redox changes in myocyte PLN oligomerization relieve PLN inhibition of SERCA2a. CONCLUSIONS PLN plays a central role in HNO-induced enhancement of SERCA2a activity, leading to increased inotropy/lusitropy in intact myocytes and hearts. PLN remains physically associated with SERCA2a; however, less monomeric PLN is available resulting in decreased inhibition of the enzyme. These findings offer new avenues to improve Ca(2+) handling in failing hearts.


Journal of Organic Chemistry | 2008

Photochemistry of N-Acetyl-, N-Trifluoroacetyl-, N- Mesyl-, and N-Tosyldibenzothiophene Sulfilimines

Vasumathi Desikan; Yonglin Liu; John P. Toscano; William S. Jenks

Time-resolved infrared (TRIR) spectroscopy, product studies, and computational methods were applied to the photolysis of sulfilimines derived from dibenzothiophene that were expected to release acetylnitrene, trifluoroacetylnitrene, mesylnitrene, and tosylnitrene. All three methods provided results for acetylnitrene consistent with literature precedent and analogous experiments with the benzoylnitrene precursor, i.e., that the ground-state multiplicity is singlet. In contrast, product studies clearly indicate triplet reactivity for trifluoroacetylnitrene, though TRIR experiments were more ambiguous. Product studies suggest that these sulfilimines are superior sources for sulfonylnitrenes, which have triplet grounds states, to the corresponding azides, and computational studies shed light on the electronic structure of the nitrenes.


Free Radical Biology and Medicine | 2016

The chemical biology of protein hydropersulfides: Studies of a possible protective function of biological hydropersulfide generation

Robert Millikin; Christopher L. Bianco; Corey White; Simran S. Saund; Stephanie Henriquez; Victor Sosa; Takaaki Akaike; Yoshito Kumagai; Shuhei Soeda; John P. Toscano; Joseph Lin; Jon M. Fukuto

The recent discovery of significant hydropersulfide (RSSH) levels in mammalian tissues, fluids and cells has led to numerous questions regarding their possible physiological function. Cysteine hydropersulfides have been found in free cysteine, small molecule peptides as well as in proteins. Based on their chemical properties and likely cellular conditions associated with their biosynthesis, it has been proposed that they can serve a protective function. That is, hydropersulfide formation on critical thiols may protect them from irreversible oxidative or electrophilic inactivation. As a prelude to understanding the possible roles and functions of hydropersulfides in biological systems, this study utilizes primarily chemical experiments to delineate the possible mechanistic chemistry associated with cellular protection. Thus, the ability of hydropersulfides to protect against irreversible electrophilic and oxidative modification was examined. The results herein indicate that hydropersulfides are very reactive towards oxidants and electrophiles and are modified readily. However, reduction of these oxidized/modified species is facile generating the corresponding thiol, consistent with the idea that hydropersulfides can serve a protective function for thiol proteins.


Biochemistry | 2012

Reactivity of Nitroxyl-Derived Sulfinamides

Gizem Keceli; John P. Toscano

Sulfinamide [RS(O)NH(2)] formation is known to occur upon exposure of cysteine residues to nitroxyl (HNO), which has received recent attention as a potential heart failure therapeutic. Because this modification can alter protein structure and function, we have examined the reactivity of sulfinamides in several systems, including a small organic molecule, peptides, and a protein. Although it has generally been assumed that this thiol to sulfinamide modification is irreversible, we show that sulfinamides can be reduced back to the free thiol in the presence of excess thiol at physiological pH and temperature. We have examined this sulfinamide reduction both in peptides, where a cyclic intermediate analogous to that proposed for asparagine deamidation reactions potentially can contribute, and in a small organic molecule, where the mechanism is restricted to a direct thiolysis. These studies suggest that the contribution from the cyclic intermediate becomes more important in environments with lower dielectric constants. In addition, although sulfinic acid [RS(O)OH] formation is observed upon prolonged incubations in water, reduction of sulfinamides is found to dominate in the presence of thiols. Finally, studies with the cysteine protease, papain, suggest that the reduction of sulfinamide to the free thiol is viable in a protein environment.

Collaboration


Dive into the John P. Toscano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gizem Keceli

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge