Rodney K. Lyn
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rodney K. Lyn.
Nature Chemical Biology | 2011
John Paul Pezacki; Jessie A. Blake; Dana C. Danielson; David C. Kennedy; Rodney K. Lyn; Ragunath Singaravelu
The nonlinear variant of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) microscopy, combines powerful Raman signal enhancement with several other advantages such as label-free detection and has been used to image various cellular processes including host-pathogen interactions and lipid metabolism.
Hepatology | 2014
Ragunath Singaravelu; Ran Chen; Rodney K. Lyn; Daniel M. Jones; Shifawn O'Hara; Yanouchka Rouleau; Jenny Cheng; Prashanth Srinivasan; Neda Nasheri; Rodney S. Russell; D. Lorne Tyrrell; John Paul Pezacki
MicroRNAs (miRNAs) are small RNAs that posttranscriptionally regulate gene expression. Their aberrant expression is commonly linked with diseased states, including hepatitis C virus (HCV) infection. Herein, we demonstrate that HCV replication induces the expression of miR‐27 in cell culture and in vivo HCV infectious models. Overexpression of the HCV proteins core and NS4B independently activates miR‐27 expression. Furthermore, we establish that miR‐27 overexpression in hepatocytes results in larger and more abundant lipid droplets, as observed by coherent anti‐Stokes Raman scattering (CARS) microscopy. This hepatic lipid droplet accumulation coincides with miR‐27bs repression of peroxisome proliferator‐activated receptor (PPAR)‐α and angiopoietin‐like protein 3 (ANGPTL3), known regulators of triglyceride homeostasis. We further demonstrate that treatment with a PPAR‐α agonist, bezafibrate, is able to reverse the miR‐27b‐induced lipid accumulation in Huh7 cells. This miR‐27b‐mediated repression of PPAR‐α signaling represents a novel mechanism of HCV‐induced hepatic steatosis. This link was further demonstrated in vivo through the correlation between miR‐27b expression levels and hepatic lipid accumulation in HCV‐infected SCID‐beige/Alb‐uPa mice. Conclusion: Collectively, our results highlight HCVs up‐regulation of miR‐27 expression as a novel mechanism contributing to the development of hepatic steatosis. (Hepatology 2014;58:98–108)
Virology | 2009
Rodney K. Lyn; David C. Kennedy; Selena M. Sagan; David R. Blais; Yanouchka Rouleau; Adrian F. Pegoraro; X. Sunney Xie; Albert Stolow; John Paul Pezacki
Here we have simultaneously characterized the influence of inhibitors of peroxisome proliferator-activated receptor alpha (PPARalpha) and the mevalonate pathway on hepatocyte lipid metabolism and the subcellular localization of hepatitis C virus (HCV) RNA using two-photon fluorescence (TPF) and coherent anti-Stokes Raman scattering (CARS) microscopy. Using this approach, we demonstrate that modulators of PPARalpha signaling rapidly cause the dispersion of HCV RNA from replication sites and simultaneously induce lipid storage and increases in lipid droplet size. We demonstrate that reductions in the levels of cholesterol resulting from inhibition of the mevalonate pathway upregulates triglyceride levels. We also show that the rate of dispersion of HCV RNA is very rapid when using a PPARalpha antagonist. This occurs with a faster rate to that of direct inhibition of 3-hydroxy-3-methyglutaryl CoA reductase (HMG-CoA reductase) using lovastatin in living cells, demonstrating the potential therapeutic value of modulating host cell pathways as part of a strategy to eliminate chronic HCV infection.
Journal of Biological Chemistry | 2010
David R. Blais; Rodney K. Lyn; Michael A. Joyce; Yanouchka Rouleau; Rineke Steenbergen; Nicola Barsby; Lin-Fu Zhu; Adrian F. Pegoraro; Albert Stolow; David L.J. Tyrrell; John Paul Pezacki
Hepatitis C virus (HCV) relies on many interactions with host cell proteins for propagation. Successful HCV infection also requires enzymatic activity of host cell enzymes for key post-translational modifications. To identify such enzymes, we have applied activity-based protein profiling to examine the activity of serine hydrolases during HCV replication. Profiling of hydrolases in Huh7 cells replicating HCV identified CES1 (carboxylesterase 1) as a differentially active enzyme. CES1 is an endogenous liver protein involved in processing of triglycerides and cholesterol. We observe that CES1 expression and activity were altered in the presence of HCV. The knockdown of CES1 with siRNA resulted in lower levels of HCV replication, and up-regulation of CES1 was observed to favor HCV propagation, implying an important role for this host cell protein. Experiments in HCV JFH1-infected cells suggest that CES1 facilitates HCV release because less intracellular HCV core protein was observed, whereas HCV titers remained high. CES1 activity was observed to increase the size and density of lipid droplets, which are necessary for the maturation of very low density lipoproteins, one of the likely vehicles for HCV release. In transgenic mice containing human-mouse chimeric livers, HCV infection also correlates with higher levels of endogenous CES1, providing further evidence that CES1 has an important role in HCV propagation.
ACS Nano | 2009
David C. Kennedy; Li-Lin Tay; Rodney K. Lyn; Yanouchka Rouleau; John Hulse; John Paul Pezacki
Adrenergic signaling that controls the contraction of cardiac myocyte cells and the beating of the mammalian heart is initiated by ligand binding to adrenergic receptors contained in nanoscale multiprotein complexes at the cellular membrane. Here we demonstrate that the surface-enhanced Raman scattering (SERS) of functionalized silver nanoparticles can be used to report on the receptor aggregation state of specifically label beta(2)-adrenergic receptors on mouse cardiac myocyte cells. Furthermore, multimodal imaging including Raman, Rayleigh scattering, scanning electron microscopy, and luminescence imaging was combined to fully characterize the beta(2)-adrenergic receptor-mediated aggregation of silver nanoparticles on the membrane of cardiac myocytes. Scanning electron microscopy analysis reveals distinct SERS active clusters of between 10 and 70 nanoparticles per signaling domain from ultra-high-resolution images of beta(2)-adrenergic receptor clusters on the cellular membrane. These techniques can be generally applied to study the aggregation of other cell surface receptors and explore their distribution on cell surfaces.
Biochemical and Biophysical Research Communications | 2010
Rodney K. Lyn; David C. Kennedy; Albert Stolow; Andrew Ridsdale; John Paul Pezacki
The hepatitis C virus (HCV) is a global health problem, with limited treatment options and no vaccine available. HCV uses components of the host cell to proliferate, including lipid droplets (LD) onto which HCV core proteins bind and facilitate viral particle assembly. We have measured the dynamics of HCV core protein-mediated changes in LDs and rates of LD movement on microtubules using a combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), and differential interference contrast (DIC) microscopies. Results show that the HCV core protein induces rapid increases in LD size. Particle tracking experiments show that HCV core protein slowly affects LD localization by controlling the directionality of LD movement on microtubules. These dynamic processes ultimately aid HCV in propagating and the molecules and interactions involved represent novel targets for potential therapeutic intervention.
Scientific Reports | 2015
Rodney K. Lyn; Ragunath Singaravelu; Stacia Kargman; Shifawn O'Hara; Helen L. W. Chan; Renata Oballa; Zheng Huang; Daniel M. Jones; Andrew Ridsdale; Rodney S. Russell; Anthony W. Partridge; John Paul Pezacki
Hepatitis C virus (HCV) replication is dependent on the formation of specialized membrane structures; however, the host factor requirements for the formation of these HCV complexes remain unclear. Herein, we demonstrate that inhibition of stearoyl-CoA desaturase 1 (SCD-1) halts the biosynthesis of unsaturated fatty acids, such as oleic acid, and negatively modulates HCV replication. Unsaturated fatty acids play key roles in membrane curvature and fluidity. Mechanistically, we demonstrate that SCD-1 inhibition disrupts the integrity of membranous HCV replication complexes and renders HCV RNA susceptible to nuclease-mediated degradation. Our work establishes a novel function for unsaturated fatty acids in HCV replication.
Biochemical and Biophysical Research Communications | 2013
Ragunath Singaravelu; Rodney K. Lyn; Prashanth Srinivasan; Julie Delcorde; Rineke Steenbergen; D. Lorne Tyrrell; John Paul Pezacki
Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEBs role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEBs role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathways role in LD dynamics and the VLDL pathway.
PLOS ONE | 2013
Rodney K. Lyn; Graham Hope; Allison R. Sherratt; John McLauchlan; John Paul Pezacki
Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV.
PLOS ONE | 2013
Nirmal Mazumder; Rodney K. Lyn; Ragunath Singaravelu; Andrew Ridsdale; Douglas J. Moffatt; Chih-Wei Hu; Han-Ruei Tsai; John McLauchlan; Albert Stolow; Fu-Jen Kao; John Paul Pezacki
Hepatitis C virus (HCV) co-opts hepatic lipid pathways to facilitate its pathogenesis. The virus alters cellular lipid biosynthesis and trafficking, and causes an accumulation of lipid droplets (LDs) that gives rise to hepatic steatosis. Little is known about how these changes are controlled at the molecular level, and how they are related to the underlying metabolic states of the infected cell. The HCV core protein has previously been shown to independently induce alterations in hepatic lipid homeostasis. Herein, we demonstrate, using coherent anti-Stokes Raman scattering (CARS) microscopy, that expression of domain 2 of the HCV core protein (D2) fused to GFP is sufficient to induce an accumulation of larger lipid droplets (LDs) in the perinuclear region. Additionally, we performed fluorescence lifetime imaging of endogenous reduced nicotinamide adenine dinucleotides [NAD(P)H], a key coenzyme in cellular metabolic processes, to monitor changes in the cofactor’s abundance and conformational state in D2-GFP transfected cells. When expressed in Huh-7 human hepatoma cells, we observed that the D2-GFP induced accumulation of LDs correlated with an increase in total NAD(P)H fluorescence and an increase in the ratio of free to bound NAD(P)H. This is consistent with an approximate 10 fold increase in cellular NAD(P)H levels. Furthermore, the lifetimes of bound and free NAD(P)H were both significantly reduced – indicating viral protein-induced alterations in the cofactors’ binding and microenvironment. Interestingly, the D2-expressing cells showed a more diffuse localization of NAD(P)H fluorescence signal, consistent with an accumulation of the co-factor outside the mitochondria. These observations suggest that HCV causes a shift of metabolic control away from the use of the coenzyme in mitochondrial electron transport and towards glycolysis, lipid biosynthesis, and building of new biomass. Overall, our findings demonstrate that HCV induced alterations in hepatic metabolism is tightly linked to alterations in NAD(P)H functional states.