Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Prudden is active.

Publication


Featured researches published by John Prudden.


The EMBO Journal | 2007

SUMO-targeted ubiquitin ligases in genome stability

John Prudden; Stephanie Pebernard; Grazia D. Raffa; Daniela Slavin; J. Jefferson P. Perry; John A. Tainer; Clare H. McGowan; Michael N. Boddy

We identify the SUMO‐Targeted Ubiquitin Ligase (STUbL) family of proteins and propose that STUbLs selectively ubiquitinate sumoylated proteins and proteins that contain SUMO‐like domains (SLDs). STUbL recruitment to sumoylated/SLD proteins is mediated by tandem SUMO interaction motifs (SIMs) within the STUbLs N‐terminus. STUbL‐mediated ubiquitination maintains sumoylation pathway homeostasis by promoting target protein desumoylation and/or degradation. Thus, STUbLs establish a novel mode of communication between the sumoylation and ubiquitination pathways. STUbLs are evolutionarily conserved and include: Schizosaccharomyces pombe Slx8‐Rfp (founding member), Homo sapiens RNF4, Dictyostelium discoideum MIP1 and Saccharomyces cerevisiae Slx5–Slx8. Cells lacking Slx8‐Rfp accumulate sumoylated proteins, display genomic instability, and are hypersensitive to genotoxic stress. These phenotypes are suppressed by deletion of the major SUMO ligase Pli1, demonstrating the specificity of STUbLs as regulators of sumoylated proteins. Notably, human RNF4 expression restores SUMO pathway homeostasis in fission yeast lacking Slx8‐Rfp, underscoring the evolutionary functional conservation of STUbLs. The DNA repair factor Rad60 and its human homolog NIP45, which contain SLDs, are candidate STUbL targets. Consistently, Rad60 and Slx8‐Rfp mutants have similar DNA repair defects.


Journal of Biological Chemistry | 2012

Dual Recruitment of Cdc48 (p97)-Ufd1-Npl4 Ubiquitin-selective Segregase by Small Ubiquitin-like Modifier Protein (SUMO) and Ubiquitin in SUMO-targeted Ubiquitin Ligase-mediated Genome Stability Functions

Minghua Nie; Aaron Aslanian; John Prudden; Johanna Heideker; Ajay A. Vashisht; James A. Wohlschlegel; John R. Yates; Michael N. Boddy

Background: SUMO-targeted ubiquitylation controls critical cellular processes, including genome stability; but effectors and mechanisms remain undefined. Results: The Cdc48-Ufd1-Npl4 segregase binds SUMO and cooperates with the SUMO-targeted ubiquitin ligase (STUbL) in DNA repair. Conclusion: Cdc48-Ufd1-Npl4 acts as a STUbL effector. Significance: Novel dual recognition of SUMO and ubiquitin co-modified proteins likely provides selectivity and specificity in signaling by these critical factors. Protein modification by SUMO and ubiquitin critically impacts genome stability via effectors that “read” their signals using SUMO interaction motifs or ubiquitin binding domains, respectively. A novel mixed SUMO and ubiquitin signal is generated by the SUMO-targeted ubiquitin ligase (STUbL), which ubiquitylates SUMO conjugates. Herein, we determine that the “ubiquitin-selective” segregase Cdc48-Ufd1-Npl4 also binds SUMO via a SUMO interaction motif in Ufd1 and can thus act as a selective receptor for STUbL targets. Indeed, we define key cooperative DNA repair functions for Cdc48-Ufd1-Npl4 and STUbL, thereby revealing a new signaling mechanism involving dual recruitment by SUMO and ubiquitin for Cdc48-Ufd1-Npl4 functions in maintaining genome stability.


The EMBO Journal | 2003

Pathway utilization in response to a site‐specific DNA double‐strand break in fission yeast

John Prudden; Joanne S. Evans; Sharon P. Hussey; Bryan Deans; Peter O'Neill; John Thacker; Tim Humphrey

We have examined the genetic requirements for efficient repair of a site‐specific DNA double‐strand break (DSB) in Schizosaccharomyces pombe. Tech nology was developed in which a unique DSB could be generated in a non‐essential minichromosome, Ch16, using the Saccharomyces cerevisiae HO‐endonuclease and its target site, MATa. DSB repair in this context was predominantly through interchromosomal gene conversion. We found that the homologous recombination (HR) genes rhp51+, rad22A+, rad32+ and the nucleotide excision repair gene rad16+ were required for efficient interchromosomal gene conversion. Further, DSB‐induced cell cycle delay and efficient HR required the DNA integrity checkpoint gene rad3+. Rhp55 was required for interchromosomal gene conversion; however, an alternative DSB repair mechanism was used in an rhp55Δ background involving ku70+ and rhp51+. Surprisingly, DSB‐induced minichromosome loss was significantly reduced in ku70Δ and lig4Δ non‐homologous end joining (NHEJ) mutant backgrounds compared with wild type. Furthermore, roles for Ku70 and Lig4 were identified in suppressing DSB‐induced chromosomal rearrangements associated with gene conversion. These findings are consistent with both competitive and cooperative interactions between components of the HR and NHEJ pathways.


Journal of Biological Chemistry | 2011

The Dynamics and Mechanism of SUMO Chain Deconjugation by SUMO-specific Proteases

Mikló s Békés; John Prudden; Tharan Srikumar; Brian Raught; Michael N. Boddy; Guy S. Salvesen

SUMOylation of proteins is a cyclic process that requires both conjugation and deconjugation of SUMO moieties. Besides modification by a single SUMO, SUMO chains have also been observed, yet the dynamics of SUMO conjugation/deconjugation remain poorly understood. Using a non-deconjugatable form of SUMO we demonstrate the underappreciated existence of SUMO chains in vivo, we highlight the importance of SUMO deconjugation, and we demonstrate the highly dynamic nature of the SUMO system. We show that SUMO-specific proteases (SENPs) play a crucial role in the dynamics of SUMO chains in vivo by constant deconjugation. Preventing deSUMOylation in Schizosaccharomyces pombe results in slow growth and a sensitivity to replication stress, highlighting the biological requirement for deSUMOylation dynamics. Furthermore, we present the mechanism of SUMO chain deconjugation by SENPs, which occurs via a stochastic mechanism, resulting in cleavage anywhere within a chain. Our results offer mechanistic insights into the workings of deSUMOylating proteases and highlight their importance in the homeostasis of (poly)SUMO-modified substrates.


Nature Structural & Molecular Biology | 2009

Molecular mimicry of SUMO promotes DNA repair

John Prudden; J. Jefferson P. Perry; Andrew S. Arvai; John A. Tainer; Michael N. Boddy

Rad60 family members contain functionally enigmatic, integral SUMO-like domains (SLDs). We show here that despite their divergence from SUMO, each Rad60 SLD interacts with a subset of SUMO pathway enzymes: SLD2 specifically binds the SUMO E2 conjugating enzyme (Ubc9), whereas SLD1 binds the SUMO E1 (Fub2, also called Uba2) activating and E3 (Pli1, also called Siz1 and Siz2) specificity enzymes. The molecular basis of this selectivity is revealed by our 0.97-Å resolution crystal structure of Rad60 SLD2, which shows that apart from the conserved non-substrate SUMO:Ubc9 interface, the surface features of SLD2 are distinct from those of SUMO. Abrogation of the SLD2:Ubc9 FEG motif–dependent interaction results in hypersensitivity to genotoxic stress and an increase in spontaneous recombination associated with aberrant replication forks. Our results provide a mechanistic basis for the near-synonymous roles of Rad60 and SUMO in survival of genotoxic stress and suggest unprecedented DNA-damage-response functions for SLDs in regulating sumoylation.


Molecular and Cellular Biology | 2011

DNA repair and global sumoylation are regulated by distinct Ubc9 noncovalent complexes.

John Prudden; J. Jefferson P. Perry; Minghua Nie; Ajay A. Vashisht; Andrew S. Arvai; Chiharu Hitomi; Grant Guenther; James A. Wohlschlegel; John A. Tainer; Michael N. Boddy

ABSTRACT Global sumoylation, SUMO chain formation, and genome stabilization are all outputs generated by a limited repertoire of enzymes. Mechanisms driving selectivity for each of these processes are largely uncharacterized. Here, through crystallographic analyses we show that the SUMO E2 Ubc9 forms a noncovalent complex with a SUMO-like domain of Rad60 (SLD2). Ubc9:SLD2 and Ubc9:SUMO noncovalent complexes are structurally analogous, suggesting that differential recruitment of Ubc9 by SUMO or Rad60 provides a novel means for such selectivity. Indeed, deconvoluting Ubc9 function by disrupting either the Ubc9:SLD2 or Ubc9:SUMO noncovalent complex reveals distinct roles in facilitating sumoylation. Ubc9:SLD2 acts in the Nse2 SUMO E3 ligase-dependent pathway for DNA repair, whereas Ubc9:SUMO instead promotes global sumoylation and chain formation, via the Pli1 E3 SUMO ligase. Moreover, this Pli1-dependent SUMO chain formation causes the genome instability phenotypes of SUMO-targeted ubiquitin ligase (STUbL) mutants. Overall, we determine that, unexpectedly, Ubc9 noncovalent partner choice dictates the role of sumoylation in distinct cellular pathways.


PLOS Genetics | 2011

SUMO-targeted ubiquitin ligase, Rad60, and Nse2 SUMO ligase suppress spontaneous Top1-mediated DNA damage and genome instability

Johanna Heideker; John Prudden; J. Jefferson P. Perry; John A. Tainer; Michael N. Boddy

Through as yet undefined proteins and pathways, the SUMO-targeted ubiquitin ligase (STUbL) suppresses genomic instability by ubiquitinating SUMO conjugated proteins and driving their proteasomal destruction. Here, we identify a critical function for fission yeast STUbL in suppressing spontaneous and chemically induced topoisomerase I (Top1)–mediated DNA damage. Strikingly, cells with reduced STUbL activity are dependent on tyrosyl–DNA phosphodiesterase 1 (Tdp1). This is notable, as cells lacking Tdp1 are largely aphenotypic in the vegetative cell cycle due to the existence of alternative pathways for the removal of covalent Top1–DNA adducts (Top1cc). We further identify Rad60, a SUMO mimetic and STUbL-interacting protein, and the SUMO E3 ligase Nse2 as critical Top1cc repair factors in cells lacking Tdp1. Detection of Top1ccs using chromatin immunoprecipitation and quantitative PCR shows that they are elevated in cells lacking Tdp1 and STUbL, Rad60, or Nse2 SUMO ligase activity. These unrepaired Top1ccs are shown to cause DNA damage, hyper-recombination, and checkpoint-mediated cell cycle arrest. We further determine that Tdp1 and the nucleotide excision repair endonuclease Rad16-Swi10 initiate the major Top1cc repair pathways of fission yeast. Tdp1-based repair is the predominant activity outside S phase, likely acting on transcription-coupled Top1cc. Epistasis analyses suggest that STUbL, Rad60, and Nse2 facilitate the Rad16-Swi10 pathway, parallel to Tdp1. Collectively, these results reveal a unified role for STUbL, Rad60, and Nse2 in protecting genome stability against spontaneous Top1-mediated DNA damage.


Molecular and Cellular Biology | 2007

Break-Induced Loss of Heterozygosity in Fission Yeast: Dual Roles for Homologous Recombination in Promoting Translocations and Preventing De Novo Telomere Addition

Jason K. Cullen; Sharon P. Hussey; Carol Walker; John Prudden; Boon-Yu Wee; Anoushka Davé; James S. Findlay; Andrew P. Savory; Timothy C. Humphrey

ABSTRACT Loss of heterozygosity (LOH), a causal event in tumorigenesis, frequently encompasses multiple genetic loci and whole chromosome arms. However, the mechanisms leading to such extensive LOH are poorly understood. We investigated the mechanisms of DNA double-strand break (DSB)-induced extensive LOH by screening for auxotrophic marker loss ∼25 kb distal to an HO endonuclease break site within a nonessential minichromosome in Schizosaccharomyces pombe. Extensive break-induced LOH was infrequent, resulting from large translocations through both allelic crossovers and break-induced replication. These events required the homologous recombination (HR) genes rad32+, rad50+, nbs1+, rhp51+, rad22+, rhp55+, rhp54+, and mus81+. Surprisingly, LOH was still observed in HR mutants, which resulted predominantly from de novo telomere addition at the break site. De novo telomere addition was most frequently observed in rad22Δ and rhp55Δ backgrounds, which disrupt HR following end resection. Further, levels of de novo telomere addition, while increased in ku70Δ rhp55Δ strains, were reduced in exo1Δ rhp55Δ and an rhp55Δ strain overexpressing rhp51. These findings support a model in which HR prevents de novo telomere addition at DSBs by competing for resected ends. Together, these results suggest that the mechanisms of break-induced LOH may be predicted from the functional status of the HR machinery.


EMBO Reports | 2014

RNF4 interacts with both SUMO and nucleosomes to promote the DNA damage response.

Lynda M. Groocock; Minghua Nie; John Prudden; Davide Moiani; Tao Wang; Anton Cheltsov; Robert P. Rambo; Andrew S. Arvai; Chiharu Hitomi; John A. Tainer; Karolin Luger; J. Jefferson P. Perry; Eros Lazzerini-Denchi; Michael N. Boddy

The post‐translational modification of DNA repair and checkpoint proteins by ubiquitin and small ubiquitin‐like modifier (SUMO) critically orchestrates the DNA damage response (DDR). The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin, through its selective recognition and ubiquitination of SUMO‐modified proteins. Here, we define a key new determinant for target discrimination by RNF4, in addition to interaction with SUMO. We identify a nucleosome‐targeting motif within the RNF4 RING domain that can bind DNA and thereby enables RNF4 to selectively ubiquitinate nucleosomal histones. Furthermore, RNF4 nucleosome‐targeting is crucially required for the repair of TRF2‐depleted dysfunctional telomeres by 53BP1‐mediated non‐homologous end joining.


Nucleic Acids Research | 2012

Meiotic DNA joint molecule resolution depends on Nse5–Nse6 of the Smc5–Smc6 holocomplex

Sophie Wehrkamp-Richter; Randy W. Hyppa; John Prudden; Gerald R. Smith; Michael N. Boddy

Faithful chromosome segregation in meiosis is crucial to form viable, healthy offspring and in most species, it requires programmed recombination between homologous chromosomes. In fission yeast, meiotic recombination is initiated by Rec12 (Spo11 homolog) and generates single Holliday junction (HJ) intermediates, which are resolved by the Mus81–Eme1 endonuclease to generate crossovers and thereby allow proper chromosome segregation. Although Mus81 contains the active site for HJ resolution, the regulation of Mus81–Eme1 is unclear. In cells lacking Nse5–Nse6 of the Smc5–Smc6 genome stability complex, we observe persistent meiotic recombination intermediates (DNA joint molecules) resembling HJs that accumulate in mus81Δ cells. Elimination of Rec12 nearly completely rescues the meiotic defects of nse6Δ and mus81Δ single mutants and partially rescues nse6Δ mus81Δ double mutants, indicating that these factors act after DNA double-strand break formation. Likewise, expression of the bacterial HJ resolvase RusA partially rescues the defects of nse6Δ, mus81Δ and nse6Δ mus81Δ mitotic cells, as well as the meiotic defects of nse6Δ and mus81Δ cells. Partial rescue likely reflects the accumulation of structures other than HJs, such as hemicatenanes, and an additional role for Nse5–Nse6 most prominent during mitotic growth. Our results indicate a regulatory role for the Smc5–Smc6 complex in HJ resolution via Mus81–Eme1.

Collaboration


Dive into the John Prudden's collaboration.

Top Co-Authors

Avatar

Michael N. Boddy

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Tainer

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Minghua Nie

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew S. Arvai

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiharu Hitomi

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johanna Heideker

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lynda M. Groocock

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge