Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John R. Bankston is active.

Publication


Featured researches published by John R. Bankston.


Science Translational Medicine | 2011

A Computational Model to Predict the Effects of Class I Anti-Arrhythmic Drugs on Ventricular Rhythms

Jonathan D. Moreno; Z. Iris Zhu; Pei Chi Yang; John R. Bankston; Mao Tsuen Jeng; Chaoyi Kang; Lianguo Wang; Jason D. Bayer; David J. Christini; Natalia A. Trayanova; Crystal M. Ripplinger; Robert S. Kass; Colleen E. Clancy

Two- and three-dimensional models of cardiac excitability based on sodium channel kinetics can predict the adverse effects of class I anti-arrhythmic drugs. Crowdsourcing the Heart for Drug Screening The old way: Consult a specialist to answer your question. The new way: Consult a crowd of generalists who in the aggregate can come up with a better answer. The old way—testing drugs on single cardiac cells in vitro—has not worked well for screening out potential anti-arrhythmia agents that can occasionally block conduction in the heart or exacerbate arrhythmia, serious problems that cause sudden death in treated patients. Instead, Moreno et al. have called on the crowd by building a model of heart tissue that includes many cardiac cells and their interactions. When anti-arrhythmia drugs are “applied” to the model’s beating heart tissue—but not when they are applied to the single cardiac cells that make up the model—the drugs that cause side effects, and the concentrations at which they do so, are revealed, results that the authors were able to validate experimentally. The model starts with the detailed kinetics of the heart’s sodium channels, first in the context of a single cell, then in two- and three-dimensional cardiac tissue. The authors compared the action of lidocaine, a class 1B anti-arrhythmic drug not known to cause conduction block, and flecainide, a prototypical class 1C drug that carries a warning from the Food and Drug Administration. In the modeled analyses of single cardiac cells, both drugs slowed excitability at concentrations that matched those used in patients, but the cells retained the ability to generate action potentials. But when the model incorporated coupled groups of cells, the behavior of the drugs diverged. Lidocaine lowered excitability without causing block, but at the higher concentrations (used clinically), flecainide caused serious conduction block when heart rates reached 160 beats per minute. Experiments in rabbit heart confirmed the results of the model. In scaled-up, 500 by 500 groups of cells, the authors’ model could also successfully predict the tendency of flecainide, but not lidocaine, to make the heart extra sensitive to heartbeats occurring too early or too late, an effect that causes even more severe arrhythmias in patients when they take anti-arrhythmia drugs. Again, experiments in rabbit hearts replicated the model’s predictions, as did simulations of anatomically accurate human hearts derived from magnetic resonance imaging images. The ability of this sophisticated model of living cardiac tissue to replicate the clinical adverse effects of lidocaine and flecainide is promising, but it will be necessary to validate its performance with other drugs to understand how to deploy it most effectively. Ideally, such models will be useful for screening out potential arrhythmic drugs that promote conduction block or exacerbate arrhythmias. Such a view of how drugs affect the collective activity of cardiac cells should help in these situations in which the cure proves more deadly than the disease. A long-sought, and thus far elusive, goal has been to develop drugs to manage diseases of excitability. One such disease that affects millions each year is cardiac arrhythmia, which occurs when electrical impulses in the heart become disordered, sometimes causing sudden death. Pharmacological management of cardiac arrhythmia has failed because it is not possible to predict how drugs that target cardiac ion channels, and have intrinsically complex dynamic interactions with ion channels, will alter the emergent electrical behavior generated in the heart. Here, we applied a computational model, which was informed and validated by experimental data, that defined key measurable parameters necessary to simulate the interaction kinetics of the anti-arrhythmic drugs flecainide and lidocaine with cardiac sodium channels. We then used the model to predict the effects of these drugs on normal human ventricular cellular and tissue electrical activity in the setting of a common arrhythmia trigger, spontaneous ventricular ectopy. The model forecasts the clinically relevant concentrations at which flecainide and lidocaine exacerbate, rather than ameliorate, arrhythmia. Experiments in rabbit hearts and simulations in human ventricles based on magnetic resonance images validated the model predictions. This computational framework initiates the first steps toward development of a virtual drug-screening system that models drug-channel interactions and predicts the effects of drugs on emergent electrical activity in the heart.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Location of KCNE1 relative to KCNQ1 in the IKS potassium channel by disulfide cross-linking of substituted cysteines

David Y. Chung; Priscilla J. Chan; John R. Bankston; Lin Yang; Guoxia Liu; Steven O. Marx; Arthur Karlin; Robert S. Kass

The cardiac-delayed rectifier K+ current (IKS) is carried by a complex of KCNQ1 (Q1) subunits, containing the voltage-sensor domains and the pore, and auxiliary KCNE1 (E1) subunits, required for the characteristic IKS voltage dependence and kinetics. To locate the transmembrane helix of E1 (E1-TM) relative to the Q1 TM helices (S1–S6), we mutated, one at a time, the first four residues flanking the extracellular ends of S1–S6 and E1-TM to Cys, coexpressed all combinations of Q1 and E1 Cys-substituted mutants in CHO cells, and determined the extents of spontaneous disulfide-bond formation. Cys-flanking E1-TM readily formed disulfides with Cys-flanking S1 and S6, much less so with the S3-S4 linker, and not at all with S2 or S5. These results imply that the extracellular flank of the E1-TM is located between S1 and S6 on different subunits of Q1. The salient functional effects of selected cross-links were as follows. A disulfide from E1 K41C to S1 I145C strongly slowed deactivation, and one from E1 L42C to S6 V324C eliminated deactivation. Given that E1-TM is between S1 and S6 and that K41C and L42C are likely to point approximately oppositely, these two cross-links are likely to favor similar axial rotations of E1-TM. In the opposite orientation, a disulfide from E1 K41C to S6 V324C slightly slowed activation, and one from E1 L42C to S1 I145C slightly speeded deactivation. Thus, the first E1 orientation strongly favors the open state, while the approximately opposite orientation favors the closed state.


Circulation Research | 2013

Ranolazine for Congenital and Acquired Late INa-Linked Arrhythmias In Silico Pharmacological Screening

Jonathan D. Moreno; Pei Chi Yang; John R. Bankston; Eleonora Grandi; Donald M. Bers; Robert S. Kass; Colleen E. Clancy

Rationale: The antianginal ranolazine blocks the human ether-a-go-go–related gene–based current IKr at therapeutic concentrations and causes QT interval prolongation. Thus, ranolazine is contraindicated for patients with preexisting long-QT and those with repolarization abnormalities. However, with its preferential targeting of late INa (INaL), patients with disease resulting from increased INaL from inherited defects (eg, long-QT syndrome type 3 or disease-induced electric remodeling (eg, ischemic heart failure) might be exactly the ones to benefit most from the presumed antiarrhythmic properties of ranolazine. Objective: We developed a computational model to predict if therapeutic effects of pharmacological targeting of INaL by ranolazine prevailed over the off-target block of IKr in the setting of inherited long-QT syndrome type 3 and heart failure. Methods and Results: We developed computational models describing the kinetics and the interaction of ranolazine with cardiac Na+ channels in the setting of normal physiology, long-QT syndrome type 3–linked &Dgr;KPQ mutation, and heart failure. We then simulated clinically relevant concentrations of ranolazine and predicted the combined effects of Na+ channel and IKr blockade by both the parent compound ranolazine and its active metabolites, which have shown potent blocking effects in the therapeutically relevant range. Our simulations suggest that ranolazine is effective at normalizing arrhythmia triggers in bradycardia-dependent arrhythmias in long-QT syndrome type 3 as well tachyarrhythmogenic triggers arising from heart failure–induced remodeling. Conclusions: Our model predictions suggest that acute targeting of INaL with ranolazine may be an effective therapeutic strategy in diverse arrhythmia-provoking situations that arise from a common pathway of increased pathological INaL.


PLOS ONE | 2007

A Novel and Lethal De Novo LQT-3 Mutation in a Newborn with Distinct Molecular Pharmacology and Therapeutic Response

John R. Bankston; Minerva Yue; Wendy K. Chung; Meghan B. Spyres; Robert H. Pass; Eric S. Silver; Kevin J. Sampson; Robert S. Kass

Background SCN5A encodes the α-subunit (Nav1.5) of the principle Na+ channel in the human heart. Genetic lesions in SCN5A can cause congenital long QT syndrome (LQTS) variant 3 (LQT-3) in adults by disrupting inactivation of the Nav1.5 channel. Pharmacological targeting of mutation-altered Na+ channels has proven promising in developing a gene-specific therapeutic strategy to manage specifically this LQTS variant. SCN5A mutations that cause similar channel dysfunction may also contribute to sudden infant death syndrome (SIDS) and other arrhythmias in newborns, but the prevalence, impact, and therapeutic management of SCN5A mutations may be distinct in infants compared with adults. Methods and Results Here, in a multidisciplinary approach, we report a de novo SCN5A mutation (F1473C) discovered in a newborn presenting with extreme QT prolongation and differential responses to the Na+ channel blockers flecainide and mexiletine. Our goal was to determine the Na+ channel phenotype caused by this severe mutation and to determine whether distinct effects of different Na+ channel blockers on mutant channel activity provide a mechanistic understanding of the distinct therapeutic responsiveness of the mutation carrier. Sequence analysis of the proband revealed the novel missense SCN5A mutation (F1473C) and a common variant in KCNH2 (K897T). Patch clamp analysis of HEK 293 cells transiently transfected with wild-type or mutant Na+ channels revealed significant changes in channel biophysics, all contributing to the probands phenotype as predicted by in silico modeling. Furthermore, subtle differences in drug action were detected in correcting mutant channel activity that, together with both the known genetic background and age of the patient, contribute to the distinct therapeutic responses observed clinically. Significance The results of our study provide further evidence of the grave vulnerability of newborns to Na+ channel defects and suggest that both genetic background and age are particularly important in developing a mutation-specific therapeutic personalized approach to manage disorders in the young.


Journal of Molecular and Cellular Cardiology | 2010

Molecular determinants of local anesthetic action of beta-blocking drugs: Implications for therapeutic management of long QT syndrome variant 3

John R. Bankston; Robert S. Kass

The congenital long QT syndrome (LQTS) is a heritable arrhythmia in which mutations in genes coding for ion channels or ion channel associated proteins delay ventricular repolarization and place mutation carriers at risk for serious or fatal arrhythmias. Triggers and therapeutic management of LQTS arrhythmias have been shown to differ in a manner that depends strikingly on the gene that is mutated. Additionally, beta-blockers, effective in the management of LQT-1, have been thought to be potentially proarrhythmic in the treatment of LQT-3 because of concomitant slowing of heart rate that accompanies decreased adrenergic activity. Here we report that the beta-blocker propranolol interacts with wild type (WT) and LQT-3 mutant Na(+) channels in a manner that resembles the actions of local anesthetic drugs. We demonstrate that propranolol blocks Na(+) channels in a use-dependent manner; that propranolol efficacy is dependent on the inactivated state of the channel; that propranolol blocks late non-inactivating current more effectively than peak sodium current; and that mutation of the local anesthetic binding site greatly reduces the efficacy of propranolol block of peak and late Na(+) channel current. Furthermore our results indicate that this activity, like that of local anesthetic drugs, differs both with drug structure and the biophysical changes in Na(+) channel function caused by specific LQT-3 mutations.


Journal of Biological Chemistry | 2006

A Carboxyl-terminal Hydrophobic Interface Is Critical to Sodium Channel Function Relevance to Inherited Disorders

Ian W. Glaaser; John R. Bankston; Huajun Liu; Michihiro Tateyama; Robert S. Kass

Perturbation of sodium channel inactivation, a finely tuned process that critically regulates the flow of sodium ions into excitable cells, is a common functional consequence of inherited mutations associated with epilepsy, skeletal muscle disease, autism, and cardiac arrhythmias. Understanding the structural basis of inactivation is key to understanding these disorders. Here we identify a novel role for a structural motif in the COOH terminus of the heart NaV1.5 sodium channel in determining channel inactivation. Structural modeling predicts an interhelical hydrophobic interface between paired EF hands in the proximal region of the NaV1.5 COOH terminus. The predicted interface is conserved among almost all EF hand-containing proteins and is the locus of a number of disease-associated mutations. Using the structural model as a guide, we provide biochemical and biophysical evidence that the structural integrity of this interface is necessary for proper Na+ channel inactivation gating. We thus demonstrate a novel role of the sodium channel COOH terminus structure in the control of channel inactivation and in pathologies caused by inherited mutations that disrupt it.


Channels | 2007

A novel LQT-3 mutation disrupts an inactivation gate complex with distinct rate-dependent phenotypic consequences.

John R. Bankston; Kevin J. Sampson; Suneel Kateriya; Ian W. Glaaser; David L. Malito; Wendy K. Chung; Robert S. Kass

Inherited mutations of SCN5A, the gene that encodes Nav1.5, the alpha subunit of the principle voltage-gated Na+ channel in the heart, cause congenital Long QT Syndrome variant 3 (LQT-3) by perturbation of channel inactivation. LQT-3 mutations induce small, but aberrant, inward current that prolongs the ventricular action potential and subjects mutation carriers to arrhythmia risk dictated in part by the biophysical consequences of the mutations. Most previously investigated LQT-3 mutations are associated with increased arrhythmia risk during rest or sleep. Here we report a novel LQT-3 mutation discovered in a pediatric proband diagnosed with LQTS but who experienced cardiac events during periods of mild exercise as well as rest. The mutation, which changes a single amino acid (S1904L) in the Nav1.5 carboxy terminal domain, disrupts the channel inactivation gate complex and promotes late Na+ channel currents, not by promoting a bursting mode of gating, but by increasing the propensity of the channel to reopen during prolonged depolarization. Incorporating a modified version of the Markov model of the Nav1.5 channel into a mathematical model of the human ventricular action potential predicts that the biophysical consequences of the S1904L mutation result in action potential prolongation that is seen for all heart rates but, in contrast to other previously-investigated LQT-3 mutant channels, is most pronounced at fast rates resulting in a drastic reduction in the cells ability to adapt APD to heart rate.


Channels | 2009

KCNE variants reveal a critical role of the beta subunit carboxyl terminus in PKA-dependent regulation of the IKs potassium channel

Junko Kurokawa; John R. Bankston; Asami Kaihawa; Lei Chen; Tetsushi Furukawa; Robert S. Kass

Co-assembly of KCNQ1 with different accessory, or beta, subunits that are members of the KCNE family results in potassium (K+) channels that conduct functionally distinct currents. The alpha subunit KCNQ1 conducts a slowly-activated delayed rectifier K+ current (IKs), a major contributor to cardiac repolarization, when co-assembled with KCNE1 and channels that favor the open state when co-assembled with either KCNE2 or KCNE3. In the heart, stimulation of the sympathetic nervous system enhances IKs. A macromolecular signaling complex of the IKs channel including the targeting protein Yotiao coordinates up- or down- regulation of channel activity by protein kinase A (PKA) phosphorylation and dephosphorylation of molecules in the complex. β-adrenergic receptor mediated IKs up-regulation, a functional consequence of PKA phosphorylation of the KCNQ1 amino terminus (N-T), requires co-expression of KCNQ1/Yotiao with KCNE1. Here, we report that co-expression of KCNE2, like KCNE1, confers a functional channel response to KCNQ1 phosphorylation, but co-expression of KCNE3 does not. Amino acid sequence comparison among the KCNE peptides, and KCNE1 truncation experiments, reveal a segment of the predicted intracellular KCNE1 carboxyl terminus (C-T) that is necessary for functional transduction of PKA phosphorylated KCNQ1. Moreover, chimera analysis reveals a region of KCNE1 sufficient to confer cAMP-dependent functional regulation upon the KCNQ1_KCNE3_Yotiao channel. The property of specific beta subunits to transduce post-translational regulation of alpha subunits of ion channels adds another dimension to our understanding molecular mechanisms underlying the diversity of regulation of native K+ channels.


Circulation Research | 2007

Fading Sodium Channels in Failing Hearts

John R. Bankston; Robert S. Kass

See related article, pages 1146–1154 nnHeart failure (HF) affects over 5 million Americans with 550 000 new cases diagnosed each year. Despite advances in understanding and treatment the mortality rate remains extremely high with up to 50% of the patients dying suddenly.1 Ventricular arrhythmias are frequently the cause of sudden death in these heart failure patients. The mechanisms for these arrhythmias remain the focus of fervent research, but ion channel remodeling in the heart with prolongation of the action potential is one of the best documented changes in heart failure that lead to these fatal arrhythmias.2 Prolongation of the cardiac action potential can occur through a decrease in outward current or an increase in inward current during the plateau phase of the action potential. Reduction in outwardly conducting potassium channels during heart failure has been well documented.2,3 The role of the inwardly conducting cardiac sodium channel (NaV1.5) in sudden death in heart failure patients is much less clear. In this issue of Circulation Research , Shang et al4 report a novel contribution of altered gene transcription in failing hearts to the expression of potentially arrhythmogenic dysfunctional sodium channels expressed in the heart.nnDuring excitation, opening of the cardiac sodium channel produces a large and rapid inward current that underlies membrane depolarization and conduction of electrical impulses in the heart. The precise timing of ion channel opening and closing can be altered under pathological conditions or during drug …


Circulation Research | 2013

Ranolazine for Congenital and Acquired Late INa-Linked Arrhythmias

Jonathan D. Moreno; Pei-Chi Yang; John R. Bankston; Eleonora Grandi; Donald M. Bers; Robert S. Kass; Colleen E. Clancy

Rationale: The antianginal ranolazine blocks the human ether-a-go-go–related gene–based current IKr at therapeutic concentrations and causes QT interval prolongation. Thus, ranolazine is contraindicated for patients with preexisting long-QT and those with repolarization abnormalities. However, with its preferential targeting of late INa (INaL), patients with disease resulting from increased INaL from inherited defects (eg, long-QT syndrome type 3 or disease-induced electric remodeling (eg, ischemic heart failure) might be exactly the ones to benefit most from the presumed antiarrhythmic properties of ranolazine. Objective: We developed a computational model to predict if therapeutic effects of pharmacological targeting of INaL by ranolazine prevailed over the off-target block of IKr in the setting of inherited long-QT syndrome type 3 and heart failure. Methods and Results: We developed computational models describing the kinetics and the interaction of ranolazine with cardiac Na+ channels in the setting of normal physiology, long-QT syndrome type 3–linked &Dgr;KPQ mutation, and heart failure. We then simulated clinically relevant concentrations of ranolazine and predicted the combined effects of Na+ channel and IKr blockade by both the parent compound ranolazine and its active metabolites, which have shown potent blocking effects in the therapeutically relevant range. Our simulations suggest that ranolazine is effective at normalizing arrhythmia triggers in bradycardia-dependent arrhythmias in long-QT syndrome type 3 as well tachyarrhythmogenic triggers arising from heart failure–induced remodeling. Conclusions: Our model predictions suggest that acute targeting of INaL with ranolazine may be an effective therapeutic strategy in diverse arrhythmia-provoking situations that arise from a common pathway of increased pathological INaL.

Collaboration


Dive into the John R. Bankston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald M. Bers

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pei Chi Yang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge